Journal of Electronic Materials

, Volume 4, Issue 1, pp 159–174

Bonding and thermal stability of implanted hydrogen in silicon

  • H. J. Stein


The behavior of implanted hydrogen in Si has been investigated by differential infrared transmittance measurements using multiple-internal-reflection (MIR) plates. Si-H bonding of implanted hydrogen is detected by seven absorption bands between 4.5 and 5.5 µm after implantation with 1016 H+/cm2 at ion energies between 70 and 400 keV. The absorption bands are close in frequency to those for SiH stretching modes for silane, and they are produced only by hydrogen implantation. Implantation with deuterium gave absorption bands shifted to lower frequencies in accord with the square root of the reduced mass ratio for Si-H relative to Si-D.

The multiplicity of hydrogen-associated bands is apparently a consequence of defects in the implanted layer. A dependence of the hydrogen-associated bands on the disorder is suggested by the annealing loss of five of the initial seven bands, and a growth of the other two, for the same temperatures (100–300°C) as those for annealing out the broad divacancy band at 1.8 µm. A disorder dependence of the Si-H vibrational frequencies is further demonstrated by a regeneration of the bands annealing below 300°C when a hydrogen-implanted MIR plate annealed at 300°C was subsequently bombarded with neon. In addition to the seven resolved bands after H+ implantation, five other bands in the same range of frequencies grow in and anneal out between 100 and 700°C. Annealing at 700°C eliminates all SiH bands, and they cannot be regenerated by bombardment with other ions. It is suggested that implanted hydrogen in Si is bonded at defect sites, and that a loss of an SiH band is caused by either a change in charge state of a defect or by the loss of a defect.

Key words

Hydrogen doping Implantation Annealing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc 1975

Authors and Affiliations

  • H. J. Stein
    • 1
  1. 1.Sandia LaboratoriesAlbuquerque

Personalised recommendations