Journal of Electronic Materials

, Volume 20, Issue 6, pp 489–501 | Cite as

Epitaxially stabilized GexSn1−x diamond cubic alloys

  • E. A. Fitzgerald
  • P. E. Freeland
  • M. T. Asom
  • W. P. Lowe
  • R. A. Macharrie
  • B. E. Weir
  • A. R. Kortan
  • F. A. Thiel
  • Y. -H. Xie
  • A. M. Sergent
  • S. L. Cooper
  • G. A. Thomas
  • L. C. Kimerling
Article

Abstract

We have investigated the stabilization of GexSn1-x on (001) InSb substrates, as well as InSb coated GaAs substrates. We find that alloys up to ≈1500Å can be stabilized when 0 <x < 0.13. Single crystal, twinned material has been grown forx = 0.16, but only for thicknesses up to 500Å. Forx < 0.13, reflection high energy electron diffraction (RHEED) patterns reveal four stages of growth: quasi-two-dimensional growth, threedimensional growth, twinned growth, and finally phase separated growth. Ion channeling (001) results support the RHEED data, showing that film quality degrades with increasing thickness. Double and triple crystal x-ray diffraction results indicate that 1200Å-thick GexSn1-x films have excellent crystallinity forx < 0.10. Forx > 0.10, we observe partial phase separation into coherent α-Sn and α-GeSn. The films are stable in the temperature range of 125-130° C, depending on Ge concentration. We present a thermodynamic model which exhibits the trends observed in the growth and stability of epitaxially stabilized GexSn1-x alloys. Electrical and optical measurements show consistently high carrier concentrations (1021 cm-3) and low carrier mobility (<1000 cm2/ Vsec) for the alloys.

Key words

GexSn1-x epitaxially stabilized GeSn/InSb 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. A. Mader and A. Baldereschi, Solid State Commun.69 1123 (1989).CrossRefGoogle Scholar
  2. 2.
    S. Oguz and W. Paul, Appl. Phys. Lett.43, 848 (1983).CrossRefGoogle Scholar
  3. 3.
    C. H. L. Goodman, IEEE Proc.129, 189 (1982).Google Scholar
  4. 4.
    S. Groves and W. Paul, Phys. Rev. Lett.11, 194 (1963).CrossRefGoogle Scholar
  5. 5.
    D. W. Jenkins and J. D. Dow, Phys. Rev. B36, 7994 (1987).CrossRefGoogle Scholar
  6. 6.
    T. Soma, H. Matsuo and S. Kagaya, Phys. Stat. Solidi105 311 (1981).Google Scholar
  7. 7.
    T. B. Massalski, Binary Alloy Phase Diagrams, vol. 2 (Am. Soc. Metals, 1986).Google Scholar
  8. 8.
    R. F. C. Farrow, D. S. Robertson, G. M. Williams, A. G. Cullis, G. R. Jones, I. M. Young and P. N. J. Dennis, J. Cryst. Growth54, 507 (1981).CrossRefGoogle Scholar
  9. 9.
    R. F. C. Farrow, J. Vac. Sci. Tech.B 1, 222 (1983).Google Scholar
  10. 10.
    J. Menendez and H. Höchst, Thin Solid Films111, 375 (1984).CrossRefGoogle Scholar
  11. 11.
    L.-W. Tu, G. K. Wong and J. B. Ketterson, Appl. Phys. Lett. 54, 1010 (1989).CrossRefGoogle Scholar
  12. 12.
    M. T. Asom, A. R. Kortan, L. C. Kimerling, and R. C. Farrow, Appl. Phys. Lett.55, 1439 (1989).CrossRefGoogle Scholar
  13. 13.
    J. L. Reno and L. L. Stephenson, Appl. Phys. Lett.54, 2207 (1989).CrossRefGoogle Scholar
  14. 14.
    R. C. Bowman, Jr., P. M. Adams, M. A. Engelhardt and H. Hochst, J. Vac. Sci. Tech.A 8, 1577 (1990).Google Scholar
  15. 15.
    W. A. Jesser, Mat. Sci. Eng.4, 279 (1969).CrossRefGoogle Scholar
  16. 16.
    G. B. Stringfellow, J. Appl. Phys.43, 3455 (1972).CrossRefGoogle Scholar
  17. 17.
    J. E. Greene, J. Vac. Sci. Tech.B 1, 229 (1983).Google Scholar
  18. 18.
    J. L. Martin and A. Zunger, Phys. Rev. Lett.56, 1400 (1986).CrossRefGoogle Scholar
  19. 19.
    R. Bruinsma and A. Zangwill, J. Phys.47, 2055 (1986).Google Scholar
  20. 20.
    F. C. Larche and J. W. Cahn, J. Appl. Phys.62, 1232 (1987).CrossRefGoogle Scholar
  21. 21.
    S. Froyen, S.-H. Wei and A. Zunger, Phys. Rev.B 38, 10124 (1988).Google Scholar
  22. 22.
    D. M. Wood and A. Zunger, Phys. Rev.B 40, 4062 (1989).Google Scholar
  23. 23.
    S. I. Shah and J. E. Greene, J. Cryst. Growth83, 3 (1987).CrossRefGoogle Scholar
  24. 24.
    P. R. Pukite, A. Harwit and S. S. Iyer, Appl. Phys. Lett.54, 2142 (1989).CrossRefGoogle Scholar
  25. 25.
    H. Hochst, M. Engelhardt and I. Herandez-Calderon, Phys. Rev.B 40, 9703 (1989).Google Scholar
  26. 26.
    H. J. Gossman, J. Appl. Phys.68, 2791 (1990).CrossRefGoogle Scholar
  27. 27.
    M. T. Asom, E. A. Fitzgerald, A. R. Kortan, B. Spear and L. C. Kimerling, Appl. Phys. Lett.55, 578 (1989).CrossRefGoogle Scholar
  28. 28.
    G. M. Williams, C. R. Whitehouse, A. G. Cullis, N. G. Chew and G. W. Blackmore, Appl. Phys. Lett.53, 1847 (1988).CrossRefGoogle Scholar
  29. 29.
    J. W. Matthews, Epitaxial Growth, Part B (Academic, New York, NY, 1975).Google Scholar
  30. 30.
    R. People and J. C. Bean, Appl. Phys. Lett.47, 322 (1985).CrossRefGoogle Scholar
  31. 31.
    E. A. Fitzgerald, J. Vac. Sci. Tech.B 7, 782 (1989).Google Scholar
  32. 32.
    E. A. Fitzgerald, Y. H. Xie, J. Michel, P. E. Freeland and B. E. Weir, MRS Symp. Proc.160, 59 (1989).Google Scholar
  33. 33.
    C. A. Hoffman, J. R. Meyer, R. J. Wagner, F. J. Bartoli, M. A. Engelhardt and H. Hochst, Phys. Rev.B 40, 11693 (1989).Google Scholar
  34. 34.
    R. E. Reed-Hill, Physical Metallurgy Principles (Brooks/Cole, Monterey, CA, 1973).Google Scholar

Copyright information

© TMS 1991

Authors and Affiliations

  • E. A. Fitzgerald
    • 1
  • P. E. Freeland
    • 1
  • M. T. Asom
    • 1
  • W. P. Lowe
    • 1
  • R. A. Macharrie
    • 1
  • B. E. Weir
    • 1
  • A. R. Kortan
    • 1
  • F. A. Thiel
    • 1
  • Y. -H. Xie
    • 1
  • A. M. Sergent
    • 1
  • S. L. Cooper
    • 1
  • G. A. Thomas
    • 1
  • L. C. Kimerling
    • 1
  1. 1.AT&T Bell LaboratoriesMurray Hill

Personalised recommendations