Metallurgical and Materials Transactions A

, Volume 15, Issue 8, pp 1545–1554 | Cite as

Resistometric study of Fe-V and Fe-Mo nitrided by constant activity aging

  • M. M. Yang
  • A. D. Krawitz


Resistometry has been employed to study alloys of Fe containing 1.1, 2.2, and 3.3 at. pct V and 2.2 and 3.0 at. pct Mo nitrided at 500 to 600 °C in NH33/H2 gas atmospheres for up to 300 hours. The very large resistivity maxima are attributed to static displacements due to interstitial N, as proposed by Hoffman and Cohen for interstitial alloys.15 The platelet size increases with nitridation temperature, and platelet number density increases with substitutional solute concentration at fixed temperature. Platelets in Fe-V-N are smaller and more stable than in Fe-Mo-N. In Fe-Mo-N overaging commences prior to saturation with nitrogen and occurs at a more rapid rate and at lower temperature than for Fe-V-N. Fe-Mo-N samples that are fully nitrided and subsequently aged in pure H2 experience a rapid initial drop in resistivity, due to removal of N from the α-Fe matrix, but then age more slowly than samples in a nitridation atmosphere. Estimates of local atomic displacements around platelets are in approximate agreement with prior results obtained from TEM measurements.


Nitrided Metallurgical Transaction Static Displacement Excess Nitrogen Nitridation Temperature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. H. Jack:Heat Treatment ’73, Metals Soc., London, 1973, p. 39.Google Scholar
  2. 2.
    K. H. Jack:Scand. J. Met., 1972, vol. 1, pp. 195–202.Google Scholar
  3. 3.
    D. L. Speirs, W. Roberts, P. Grieveson, and K. H. Jack:Chemical Metallurgy in Iron and Steel, Iron and Steel Inst., London, 1973 pp. 371–73.Google Scholar
  4. 4.
    J. H. Driver, D. C. Unthank, and K.H. Jack:Phil. Mag., 1972, vol. 26, pp. 1227–31.CrossRefGoogle Scholar
  5. 5.
    D. L. Speirs: Dissertation, University of Newcastle-Upon-Tyne, England, 1969.Google Scholar
  6. 6.
    J. H. Driver and J. M. Papazian:Acta Metall., 1973, vol. 21, pp. 1139–49.CrossRefGoogle Scholar
  7. 7.
    M. Pope, P. Grieveson, and K. H. Jack:Scand. J. Met., 1973, vol. 2, pp. 29–34.Google Scholar
  8. 8.
    D. L. Speirs, W. Roberts, P. Grieveson, and K. H. Jack: Proceedings of Second International Conference on Strength of Metals, Monterey, CA, ASM, Metals Park, OH, 1970.Google Scholar
  9. 9.
    A. Krawitz:Scripta Met., 1977, vol. 11, pp. 117–22.CrossRefGoogle Scholar
  10. 10.
    S. S. Brenner and S. R. Goodman:Scripta Met., 1971, vol. 5, pp. 865–70.CrossRefGoogle Scholar
  11. 11.
    G. P. Huffman and H. H. Podgurski:Acta Metall., 1975, vol. 23, pp. 1367–79.CrossRefGoogle Scholar
  12. 12.
    V. A. Phillips and A. V. Seybolt:Trans. TMS-AIME, 1968, vol 242 p. 2415.Google Scholar
  13. 13.
    J. M. Ziman:Electron and Phonons, Oxford University Press, 1960.Google Scholar
  14. 14.
    C. Panseri and T. Federighi:Acta Metall., 1960, vol. 8, pp. 217–38.CrossRefGoogle Scholar
  15. 15.
    D. W. Hoffman and M. Cohen:Acta Metall., 1973, vol. 21, pp. 1215–23.CrossRefGoogle Scholar
  16. 16.
    W. B. Pearson:Handbook of Lattice Spacings and Structure of Metals, Pergamon Press, New York, NY, 1958.Google Scholar
  17. 17.
    D. Atkinson and C. Bodsworth:J.I.S.I., 1970, vol. 208, pp. 587–93.Google Scholar
  18. 18.
    G. Gandolfi:Miner. Petrogr. Acta, 1967, vol. 13, pp. 67–76.Google Scholar
  19. 19.
    H. P. Klug and L. E. Alexander:X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edition, John Wiley, New York, NY, 1974.Google Scholar
  20. 20.
    H. H. Podgurski and H. E. Knechtel:Trans. TMS-AIME, 1969, vol. 245, pp. 1595–601.Google Scholar
  21. 21.
    D. H. Jack:Acta Metall., 1976, vol. 24,. pp. 137–46.CrossRefGoogle Scholar
  22. 22.
    B. J. Lightfoot and D. H. Jack:Heat Treatment ’73, Metal Soc., London, 1975.Google Scholar
  23. 23.
    J. L. Meijering:Advances in Materials Research, 1971, vol. 5, p. 1.Google Scholar
  24. 24.
    J. R.G. da Silva and R. B. McLellan:Materials Science and Engineering, 1976, vol. 26, pp. 83–87.CrossRefGoogle Scholar
  25. 25.
    O. E. Atasoy:Trans. JIM, 1976, vol. 17, pp. 625–29.CrossRefGoogle Scholar
  26. 26.
    R. W. Fountain and J. Chipman:Trans. TMS-AIME, 1958, vol. 212, pp. 737–48.Google Scholar
  27. 27.
    A. Kelly and R. B. Nicholson:Progress in Materials Science, 1963, vol. 10, pp. 176–78.Google Scholar
  28. 28.
    K. Abiko and Y. Imai:Trans. JIM, 1977, vol. 18, pp. 113–21.CrossRefGoogle Scholar
  29. 29.
    G. W. C. Kaye and T. H. Laby:Tables of Physical Chemical Constant, 1973, p. 102.Google Scholar
  30. 30.
    R. Wagner and S. S. Brenner:Acta Metall., 1978, vol. 26, pp. 197–206.CrossRefGoogle Scholar
  31. 31.
    W. R. McIntire and J. B. Cohen:Acta Metall., 1975, vol. 23, pp. 953–56.CrossRefGoogle Scholar

Copyright information

© The Metallurgical Society of American Institute of Mining 1984

Authors and Affiliations

  • M. M. Yang
    • 1
  • A. D. Krawitz
    • 2
  1. 1.IBM CorporationTucson
  2. 2.Mechanical and Aerospace EngineeringUniversity of MissouriColumbia

Personalised recommendations