Metallurgical Transactions B

, Volume 19, Issue 3, pp 483–491 | Cite as

Surface tension of binary metal—surface active solute systems under conditions relevant to welding metallurgy

  • P. Sahoo
  • T. Debroy
  • M. J. McNallan
Welding and Joining


Since the fluid flow, heat transfer, and the resulting weld properties are significantly affected by interfacial tension driven flow, the variation of interfacial tension in dilute binary solutions is studied as a function of both composition and temperature. Entropy and enthalpy of adsorption of surface active components such as oxygen, sulfur, selenium, and tellurium in Fe-O, Fe-S, Fe-Se, Cu-O, Cu-S, Cu-Se, Cu-Te, Ag-O, and Sn-Te systems were calculated from the analysis of the published data on interfacial tension of these systems. For these calculations, a formalism based on the combination of Gibbs and Langmuir adsorption isotherms was used. Interfacial tensions in Cr-O, Co-S, and Ni-S systems, where the data are scarce, were predicted by using certain approximations. The computed values were found to be in reasonable agreement with the data available in the literature. Temperature coefficients of interfacial tensions were calculated for several binary systems. It was demonstrated that in dilute solutions, the temperature coefficient of interfacial tension is strongly influenced by the heat of adsorption which, in turn, is influenced by the difference in electronegativity between the solute and solvent ions.


Surface Tension Metallurgical Transaction Interfacial Tension Weld Pool Langmuir Adsorption Isotherm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C.R. Heiple and J. R. Roper:Weld. Journal, 1982, vol. 61, pp. 97s-102s.Google Scholar
  2. 2.
    C.R. Heiple, J.R. Roper, R.T. Stagner, and J.J. Alden:Weld. Journal, 1983, vol. 62, pp. 72s-77s.Google Scholar
  3. 3.
    R.E. Sundell, S. M. Correa, H. D. Solomon, L. A. Wojcik, D. W. Walsh, and W. F. Savage:1985 NSF Manufacturing Systems Research Conference, May 14-17, 1985, University of Wisconsin-Madison.Google Scholar
  4. 4.
    B. Von Szyszkowski:Z. Phys. Chem., 1908, vol. 64, pp. 385–414.Google Scholar
  5. 5.
    G. Bernard and C. H. P. Lupis:Surf. Sci., 1974, vol. 42, pp. 61–85.CrossRefADSGoogle Scholar
  6. 6.
    G. R. Belton:Metall. Trans. B, 1976, vol. 7B, pp. 35–42.ADSGoogle Scholar
  7. 7.
    B. C. Allen:Liquid Metals—Chemistry and Physics, S. Z. Beer, ed., M. Dekker, Inc., New York, NY, 1972, pp. 161–212.Google Scholar
  8. 8.
    C.H.P. Lupis:Chemical Thermodynamics of Materials, Elsevier Science Pub. Co., New York, NY, 1983.Google Scholar
  9. 9.
    Zen-ichiro Monta and Akio Kasama:Trans. Jpn. Inst. Met., 1980, vol. 21, no. 8, pp. 522–30.Google Scholar
  10. 10.
    G. Bernard and C.H.P. Lupis:Metall. Trans., 1971, vol. 2, pp. 2991–98.CrossRefGoogle Scholar
  11. 11.
    B.C. Allen:TMS-AIME, 1963, vol. 227, pp. 1175–83.Google Scholar
  12. 12.
    H. P. Papazian:Scripta Metall., 1984, vol. 18, pp. 1401–03.CrossRefGoogle Scholar
  13. 13.
    R.G. Ward:An introduction to the physical chemistry of iron and steel making, Edward Arnold Ltd., London, 1962.Google Scholar
  14. 14.
    S. Otsuka and Z. Kozuka:Metall. Trans. B, 1980, vol. 11B, pp. 119–24.CrossRefADSGoogle Scholar
  15. 15.
    K. Nogi, W. B. Chung, A. McLean, and W. A. Miller:private com-munication, University of Toronto, Canada, 1985.Google Scholar
  16. 16.
    K. Monma and H. Suto:J. Jpn. Inst. Met., 1960, vol. 24, pp. 611–14.Google Scholar
  17. 17.
    A. Kasama, A. McLean, W. A. Miller, Z. Morita, and M. J. Ward:Can. Metall. Quart., 1983, vol. 22, no. 1, pp. 9–17.Google Scholar
  18. 18.
    G.S. Ershov and V.M. Bychev:Russ. Metall., 1975, vol. 4, pp. 45–46.Google Scholar
  19. 19.
    R. N. Murarka, W. K. Lu, and A. E. Hamielec:Can. Metall. Quart., 1975, vol. 14, pp. 111–15.Google Scholar
  20. 20.
    B.J. Keene, K. C. Mills, J.W. Bryant, and E. D. Hondros:Can. Metall. Quart., 1982, vol. 21, no. 4, pp. 393–403.Google Scholar
  21. 21.
    F.A. Halden and W.D. Kingery:J. Phys. Chem., 1955, vol. 59, pp. 557–59.CrossRefGoogle Scholar
  22. 22.
    Van Tszin-Tan, R. A. Karasev, and A. M. Samarin:Russ. Metall, and Fuels (English Trans.), 1960, vol. 1, pp. 21–27.Google Scholar
  23. 23.
    K. Ogino, K. Nogi, and O. Yamase:Trans. Iron SteelInst. Jpn., 1983, vol. 23, pp. 234–39.Google Scholar
  24. 24.
    B. Gallois and C. H.P. Lupis:Metall. Trans. B, 1981, vol. 12B, pp. 549–57.CrossRefADSGoogle Scholar
  25. 25.
    S.P. Mehrotra and A.C.D. Chaklader:Metall. Trans. B, 1985, vol. 16B, pp. 567–75.CrossRefADSGoogle Scholar
  26. 26.
    K. Monma and H. Suto:J. Jpn. Inst. Met., 1960, vol. 24, pp. 377–79.Google Scholar
  27. 27.
    K. Monma and H. Suto:Trans. Jpn. Inst. Met., 1961, vol. 2, pp. 148–53.Google Scholar
  28. 28.
    P. Kozakevitch:Surface Phenomena of Metals, Society of Chemical Industry Monograph 28, 1968, pp. 223-45.Google Scholar
  29. 29.
    Handbook of Geochemistry, K. H. Wedepohl, executive ed., Springer-Verlag, 1969.Google Scholar
  30. 30.
    P. Kozakevitch, S. Chatel, G. Urbain, and M. Sage:Rev. Metall., 1955, vol. 52, pp. 139–60.Google Scholar
  31. 31.
    P. Kozakevitch and G. Urbain:Mem. Sci. Rev. Metall., 1961, vol. 58, pp. 517–34.Google Scholar
  32. 32.
    C.F. Baes and H.H. Kellog:Trans. AIME, 1953, vol. 197, pp. 643–48.Google Scholar
  33. 33.
    K. Monma and H. Suto:J. Jpn. Inst. Met., 1960, vol. 24, pp. 374–77.Google Scholar

Copyright information

© The Metallurgical Society and ASM INTERNATIONAL 1988

Authors and Affiliations

  • P. Sahoo
    • 1
  • T. Debroy
    • 1
  • M. J. McNallan
    • 2
  1. 1.Department of Materials Science and EngineeringThe Pennsylvania State University
  2. 2.Department of Civil Engineering, Mechanics and MetallurgyThe University of Illinois at ChicagoChicago

Personalised recommendations