Advertisement

Journal of Electronic Materials

, Volume 18, Issue 2, pp 143–150 | Cite as

The effect of ion-implantation damage on dopant diffusion in silicon during shallow-junction formation

  • Yudong Kim
  • Hisham Z. Massoud
  • Richard B. Fair
Article

Abstract

Low-thermal-budget annealing of ion-implanted BF 2 + , P, and As in Si was studied for shallow-junction formation. Implant doses were sufficient to amorphize the silicon surface region. Low-temperature furnace annealing and rapid-thermal annealing of ionimplanted boron, phosphorus and arsenic in silicon exhibit a transient enhanced diffusion regime resulting injunction depths considerably deeper than expected. The origin of this transient enhanced diffusion is the annealing of ion-implantation damage in the silicon substrate. We have found that point-defect generation during the annealing of either shallow end-of-range damage or small clusters of point defects dominates the transient enhanced diffusion process depending upon the annealing temperature and time. The net effect of damage annealing is to reduce the activation energy for dopant diffusion by an amount equal to the activation energy of the supersaturation of point defects in silicon. Models which can describe the transient enhancement characteristics in dopant diffusion during both furnace and rapid-thermal annealing of these implants are discussed.

Key words

Ion implantation damage, diffusion point defects shallow junctions 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. C. Ozturk and J. J. Wortman, Appl. Phys. Lett.52, 281 (1988).CrossRefGoogle Scholar
  2. 2.
    Y. El-Mansy, IEEE Trans. Electron DevicesED-29, 567 (1982).Google Scholar
  3. 3.
    H. Müller, H. Ryssel and I. Ruge, inIon Implantation in Semiconductor, edited by I. Ruge and J. Graul, p. 85, Spring Verlag, Berlin, 1971.Google Scholar
  4. 4.
    N. C. Tung, J. Electrochem. Soc.132, 914 (1985).CrossRefGoogle Scholar
  5. 5.
    D. E. Davies, IEEE Electron. Dev. Lett.,6, 397 (1985).Google Scholar
  6. 6.
    T. O. Sedgwick, Mater. Res. Soc. Symp. Proc.71, 403 (1986).Google Scholar
  7. 7.
    B. L. Crowder, J. F. Ziegler and G. W. Cole, inIon Implantation in Semiconductors and Other Materials, edited by B. L. Crowder, p. 257, Plenum, New York, 1973.Google Scholar
  8. 8.
    R. Kwor, D. L. Kwong and Y. K. Yeo, Appl. Phys. Lett.45, 77 (1984).CrossRefGoogle Scholar
  9. 9.
    J. B. Lasky, J. Appl. Phys.54, 6009 (1983).CrossRefGoogle Scholar
  10. 10.
    T. O. Sedgwick, R. Kalish, S. R. Mader and S. C. Shatas, Mat. Res. Soc. Symp. Proc.23, 293 (1984).Google Scholar
  11. 11.
    W. K. Hofker, H. W. Werner, D. P. Oosthoek and H. A. M. de Grefte, Appl. Phys.2, 265 (1973).CrossRefGoogle Scholar
  12. 12.
    R. T. Hodgson, V. R. Deline, S. M. Mader and J. C. Gelpey, Appl. Phys. Lett.44, 589 (1984).CrossRefGoogle Scholar
  13. 13.
    T. O. Sedgwick, J. Electrochem. Soc.130, 484 (1983).CrossRefGoogle Scholar
  14. 14.
    M. Miyake and S. Aoyama, J. Appl. Phys.63, 1754 (1988).CrossRefGoogle Scholar
  15. 15.
    M. Servidori, R. Angelucci, F. Cembali, P. Negrini, S. Solmi, P. Zaumseil, and U. Winter, J. Appl. Phys.61, 1834 (1987).CrossRefGoogle Scholar
  16. 16.
    S. J. Pennycook, J. Narayan and O. W. Holland, J. Electrochem. Soc.132, 1962 (1985).CrossRefGoogle Scholar
  17. 17.
    A. E. Michel, W. Rausch, P. A. Ronsheim and R. H. Kastl, Appl. Phys. Lett.50, 416 (1987).CrossRefGoogle Scholar
  18. 18.
    R. B. Fair, IEEE Trans. Electron Devices ED-35, 285 (1988).CrossRefGoogle Scholar
  19. 19.
    D. A. Antoniadis, A. M. Lin and R. W. Dutton, Appl. Phys. Lett.33, 1030 (1978).CrossRefGoogle Scholar
  20. 20.
    S. Mizuo and H. Higuchi, Jpn. J. Appl. Phys.20, 739 (1981).CrossRefGoogle Scholar
  21. 21.
    R. M. Harris and D. A. Antoniadis, Appl. Phys. Lett.43, 937 (1983).CrossRefGoogle Scholar
  22. 22.
    S. Solmi, R. Angelucci, F. Cembali, M. Servidori, and M. Anderle, Appl. Phys. Lett.51, 331 (1987).CrossRefGoogle Scholar
  23. 23.
    K. S. Jones, S. Prussin, and E. R. Weber, J. Appl. Phys.62 4114 (1987).CrossRefGoogle Scholar
  24. 24.
    T. O. Sedgwick, A. E. Michel, V. R. Deline, S. A. Cohen and J. B. Lasky, J. Appl. Phys.63, 1452 (1988).CrossRefGoogle Scholar
  25. 25.
    A. M. Mazzone, Phys. Status Solidi (A)95, 149 (1986).CrossRefGoogle Scholar
  26. 26.
    M. Servidori, P. Zaumseil, U. Winter, F. Cembali and A. M. Mazzone, Nucl. Inst. Methods Phy. Res. B.22, 497 (1987).CrossRefGoogle Scholar
  27. 27.
    R. B. Fair, Abstract No. 194, Extended Abstracts of the Spring Meeting of the Electrochemical Society, Vol. 88-1, p. 303, The Electrochemical Society, Pennington, New Jersey, 1988.Google Scholar
  28. 28.
    T. E. Seidel, D. J. Lischner, C. S. Pai, R. V. Knoell, D. M. Maher and D. C. Jacobson, Nucl. Inst. Methods Phys. Res. B7/8, 251 (1985).CrossRefGoogle Scholar
  29. 29.
    T. E. Seidel and A. U. MacRae, Rad. Effects7, 1 (1973).Google Scholar
  30. 30.
    Y. Kim, H. Z. Massoud and R. B. Fair, Appl. Phys. Lett.53, 2197 (1988).CrossRefGoogle Scholar
  31. 31.
    J. F. Gibbons, E. O. Hechtl and T. Tsurushima, Appl. Phys. Lett.15, 117 (1969).CrossRefGoogle Scholar
  32. 32.
    D. Fan, J. Huang, R. J. Jaccodine, P. Kahora and F. Stevie, Appl. Phys. Lett.50, 1745 (1987).CrossRefGoogle Scholar
  33. 33.
    T. Y. Tan, Phil. Mag. A44, 101 (1981).Google Scholar
  34. 34.
    S. Prussin and K. S. Jones, Abstract No. 176, Extended Abstracts of the Spring Meeting of the Electrochemical Society, Vol. 88-1, p. 271, The Electrochemical Society, Pennington, New Jersey, 1988.Google Scholar
  35. 35.
    R. B. Fair, J. J. Wortman and J. Liu, J. Electrochem. Soc.131, 2387 (1984).CrossRefGoogle Scholar
  36. 36.
    J. D. Verhoeven,Fundamentals of Physical Metallurgy, John Wiley & Sons, Inc., New York, 1975.Google Scholar
  37. 37.
    J. Narayan and K. Jagannadham, J. Appl. Phys.62, 1694 (1987).CrossRefGoogle Scholar
  38. 38.
    N. R. Wu, P. Ling, D. K. Sadana, J. Washburn and M. I. Current,Defects in Silicon, Electrochemical Society Proceedings Vol. 83, edited by W. M. Bullis and L. C. Kimmerling, p. 363, The Electrochemical Society, Pennington, New Jersey, 1983.Google Scholar
  39. 39.
    A. C. Ajmera and G. A. Rozgonyi, Appl. Phys. Lett.49, 1269 (1986).CrossRefGoogle Scholar
  40. 40.
    K. Nishi and D. A. Antoniadis, Appl. Phys. Lett.46, 516 (1985).CrossRefGoogle Scholar
  41. 41.
    D. A. Antoniadis, J. Electrochem. Soc.129, 1093 (1982).CrossRefGoogle Scholar
  42. 42.
    R. Angelucci, F. Cembali, P. Negrini, M. Servidori and S. Solmi, J. Electrochem. Soc.134, 3130 (1987).CrossRefGoogle Scholar
  43. 43.
    J. C. C. Tsai, D. G. Schimmel, R. B. Fair and W. Maszara, J. Electrochem. Soc.134, 1508 (1987).CrossRefGoogle Scholar
  44. 44.
    H. Strunk, U. Gösele and B. O. Kolbesen, Appl. Phys. Lett.34, 530 (1979).CrossRefGoogle Scholar
  45. 45.
    S. Prussin and K. S. Jones, Nucl. Inst. Methods Phy. Res. B21, 496 (1987).CrossRefGoogle Scholar
  46. 46.
    K. S. Jones, S. Prussin and E. R. Weber, Nucl. Inst. Methods Phy. Res. B21, 499 (1987).CrossRefGoogle Scholar

Copyright information

© AIME 1989

Authors and Affiliations

  • Yudong Kim
    • 1
  • Hisham Z. Massoud
    • 1
  • Richard B. Fair
    • 1
    • 2
  1. 1.Department of Electrical EngineeringDuke UniversityDurham
  2. 2.Microelectronics Center of North CarolinaResearch Triangle Park

Personalised recommendations