Metallurgical Transactions A

, Volume 22, Issue 2, pp 489–498 | Cite as

Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions

  • Yasuharu Sakuma
  • Osamu Matsumura
  • Hiroshi Takechi
Mechanical Behaviour


Processing peculiarities and functions of alloying elements, such as Si and Mn, were studied for improving formability of steel sheets with mixed microstructures. Annealing a sheet steel with 0.2 pct C in the intercritical range produced very fine particles of retained austenite which were moderately stabilized due to C enrichment by subsequent holding in the bainite transformation range. Its strength-ductility balance is greatly superior to that of other dual-phase steels due to transformation-induced plasticity (TRIP). The holding time in the bainite transformation range varies with temperature, depending on the activation energy of C diffusion in austenite, and shifts to longer times with an increase of Si or Mn additions. The optimum cooling rate from the intercritical region is reduced with an increase of Mn content but is not influenced by Si content. Additional Mn makes the retained austenite content larger, although uniform elongation remains the same. In this case, the product of tensile strength and total elongation is increased due to an increase in the tensile strength. Contrary to Mn, Si does not affect retained austenite content but improves the uniform elongation by increasing its stability.


Ferrite Austenite Cool Rate Metallurgical Transaction Bainite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Hayami and T. Furukawa:Microalloying 75, Union Carbide Corp., New York, NY, 1975, pp. 78–87.Google Scholar
  2. 2.
    T. Furukawa, H. Morikawa, H. Takechi, and K. Koyama:Structure and Properties of Dual-Phase Steels, R.A. Kot and J.W. Morris, eds., AIME, New York, NY, 1979, pp. 281–303.Google Scholar
  3. 3.
    Narasimha-Rao V. Bangaru and A.K. Sachdev:Metall. Trans. A, 1982, vol. 13A, pp. 1899–906.Google Scholar
  4. 4.
    A.K. Sachdev:Acta Metall., 1983, vol. 31, pp. 2037–42.CrossRefGoogle Scholar
  5. 5.
    V.F. Zackay, E.R. Parker, D. Fahr, and R. Bush:Trans. Am. Soc. Met., 1967, vol. 60, pp. 252–59.Google Scholar
  6. 6.
    S.J. Mates and R.F. Hehemann:TMS-AIME, 1961, vol. 221, pp. 179–85.Google Scholar
  7. 7.
    R. Le Houllier, G. Begin, and A. Dube:Metall. Trans., 1971, vol. 2, pp. 2645–53.CrossRefGoogle Scholar
  8. 8.
    V.M. Pivovarov, I.A. Tananko, and A.A. Levchenko:Phys. Met. Metallogr., 1972, vol. 32, pp. 116–22.Google Scholar
  9. 9.
    E. Dorazil and J. Svejcar:Arch. Eisenhüttenwes., 1979, vol. 50, pp. 293–98.Google Scholar
  10. 10.
    R.F. Hehemann, K.R. Kinsman, and H.I. Aaronson:Metall. Trans., 1972, vol. 3, pp. 1077–94.CrossRefGoogle Scholar
  11. 11.
    H.K.D.H. Bhadeshia and D.V. Edmonds:Metall. Trans. A, 1979, vol. 10A, pp. 895–907.Google Scholar
  12. 12.
    H.K.D.H. Bhadeshia and D.V. Edmonds:Met. Sci., 1983, vol. 17, pp. 411–19.CrossRefGoogle Scholar
  13. 13.
    H.K.D.H. Bhadeshia and D.V. Edmonds:Met. Sci., 1983, vol. 17, pp. 420–25.CrossRefGoogle Scholar
  14. 14.
    H.K.D.H. Bhadeshia and D.V. Edmonds:Acta Metall., 1980, vol. 28, pp. 1265–73.CrossRefGoogle Scholar
  15. 15.
    H. Seilstorfer and N.B. Ottobrunn:Arch Eisenhüttenwes., 1974, vol. 45, pp. 623–27.Google Scholar
  16. 16.
    B.P.J. Sandvik and H.P. Nevalanien:Met. Technol., 1981, vol. 8, pp. 213–20.Google Scholar
  17. 17.
    V.T.T. Miihkinen and D.V. Edmonds:Mater. Sci. Technol., 1987, vol. 3, pp. 422–31.Google Scholar
  18. 18.
    V.T.T. Miihkinen and D.V. Edmonds:Mater. Sci. Technol., 1987, vol. 3, pp. 432–40.Google Scholar
  19. 19.
    V.T.T. Miihkinen and D.V. Edmonds:Mater. Sci. Technol., 1987, vol. 3, pp. 441–49.Google Scholar
  20. 20.
    K. Tomita, T. Okita, and K. Nakaoka:Trans. Iron Steel Inst. Jpn., 1984, vol. 24, p. B363.Google Scholar
  21. 21.
    O. Matsumura, Y. Sakuma. and H. Takechi:Trans. Iron Steel Inst. Jpn., 1987, vol. 27, pp. 570–79.Google Scholar
  22. 22.
    O. Matsumura, Y. Sakuma, and H. Takechi:Scripta Metall., 1987, vol. 21, pp. 1301–06.CrossRefGoogle Scholar
  23. 23.
    H.C. Chen, K. Tomokiyo, H. Era, and M. Shimizu:Tech. Rep. Kyushu Univ., 1987, vol. 60, pp. 643–49.Google Scholar
  24. 24.
    K. Tsuzaki, J. Inada, K. Matsumoto, and M. Maki:Current Adv. in Mat. and Processes, 1988, vol. 1, p. 1855.Google Scholar
  25. 25.
    K.W. Andrews:J. Iron Steel Inst., 1965, vol. 203, pp. 721–27.Google Scholar
  26. 26.
    S. Bandoh, O. Matsumura, and Y. Sakuma:Trans. Iron Steel Inst. Jpn., 1988, vol. 28, pp. 569–74.Google Scholar
  27. 27.
    D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss:Metall. Trans. A, 1985, vol. 16A, pp. 1385–92.Google Scholar
  28. 28.
    K. Shinoda and T. Yamada:Netsu Shori, 1980, vol. 20, pp. 326–30.Google Scholar
  29. 29.
    S. Tagashira, T. Yamada, T. Kamiyo, and K. Shinoda:Curr. Adv. Mater. Processes, 1988, vol. 1, p. 1774.Google Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1991

Authors and Affiliations

  • Yasuharu Sakuma
    • 1
  • Osamu Matsumura
    • 2
  • Hiroshi Takechi
    • 3
  1. 1.Department of Metallurgical and Materials EngineeringColorado School of MinesGolden
  2. 2.Sheet and Coil Laboratory, R&D-IINippon Steel CorporationJapan
  3. 3.Sheet and Coil Laboratory, R&D-IINippon Steel CorporationSagamiharaJapan

Personalised recommendations