Journal of Electronic Materials

, Volume 21, Issue 2, pp 173–179 | Cite as

Effects of S, Si, or Fe dopants on the diffusion of Zn in InP during MOCVD

  • C. Blaauw
  • B. Emmerstorfer
  • D. Kreller
  • L. Hobbs
  • A. J. Springthorpe
Article

Abstract

Diffusion of Zn in InP during growth of InP epitaxial layers has been investigated in layer structures consisting of Zn-InP epilayers grown on S-InP and Fe-InP substrates, and on undoped InP epilayers. The layers were grown by metalorganic chemical vapour deposition (MOCVD) atT = 625° C andP = 75 Torr. Dopant diffusion profiles were measured by secondary ion mass spectrometry (SIMS). At sufficiently high Zn doping levels ([Zn] ≥8 × 1017 cm−3) diffusion into S-InP substrates took place, with accumulation of Zn in the substrate at a concentration similar to [S]. Diffusion into undoped InP epilayers produced a diffusion tail at low [Zn] levels, probably associated with interstitial Zn diffusion. For diffusion into Fe-InP, this low level diffusion produced a region of constant Zn concentration at [Zn] ≈ 3 × 1016 cm−3, due to kick-out of the original Fe species from substitutional sites. We also investigated diffusion out of (Zn, Si) codoped InP epilayers grown on Fe-InP substates. The SIMS profiles were characterised by a sharp decrease in [Zn] at the epilayer-substrate interface; the magnitude of this decrease corresponded to that of the Si donor level in the epilayer. For [Si] ≫ [Zn] in the epilayer no Zn diffusion was observed; Hall measurements indicated that the donor and acceptor species in those samples were electrically active. All these results are consistent with the presence of donor-acceptor interactions in InP, resulting in the formation of ionised donor-acceptor pairs which are immobile, and do not contribute to the diffusion process.

Key words

InP MOCVD dopant diffusion dopant incorporation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Tuck, “Atomic Diffusion in III-V Semiconductors,” Adam Hilger, Bristol and Philadelphia (1988).Google Scholar
  2. 2.
    B. Tuck and A. Hooper, J. Phys.D8, 1806 (1975).Google Scholar
  3. 3.
    B. Tuck and M. D. Zahari, Inst. Phys. Conf. Ser.33a, 177 (1977).Google Scholar
  4. 4.
    K. Kazmierski, A. M. Huber, G. Morillot and B. de Cremoux, Jpn. J. Appl. Phys.23, 628 (1984).CrossRefGoogle Scholar
  5. 5.
    B. Tuck, J. Phys.D18, 557 (1985).Google Scholar
  6. 6.
    C. Kazmierski, J. Appl. Phys.64, 6573 (1988).CrossRefGoogle Scholar
  7. 7.
    G. J. van Gurp, T. van Dongen, G. M. Fontijn, J. M. Jacobs and D. L. A. Tjaden, J. Appl. Phys.65, 553 (1989).CrossRefGoogle Scholar
  8. 8.
    C. Blaauw, F. R. Shepherd and D. Eger, J. Appl. Phys.66, 605 (1989).CrossRefGoogle Scholar
  9. 9.
    N. Puetz, G. Hillier and A. J. SpringThorpe, J. Electron. Ma- ter.17, 381 (1988).CrossRefGoogle Scholar
  10. 10.
    C. Blaauw, R. A. Bruce, C. J. Miner, A. J. Howard, B. Emmerstorfer and A. J. SpringThorpe, J. Electron. Mater.18, 567 (1989).Google Scholar
  11. 11.
    S. Chichibu, M. Kushibe, K. Eguchi, M. Funemizu and Y. Ohba, J. Appl. Phys.68, 859 (1990).CrossRefGoogle Scholar
  12. 12.
    C. Blaauw, B. Emmerstorfer, R. A. Bruce and M. Benzaquen, Proceedings of the 6th Conference on Semi-Insulating III-V Materials, Toronto, page 137 (1990); eds. A. G. Milnes and C. J. Miner, publisher Adam Hilger.Google Scholar
  13. 13.
    E. W. A. Young and G. M. Fontijn, Appl. Phys. Lett.56, 146 (1990).CrossRefGoogle Scholar
  14. 14.
    E. W. A. Young and G. M. Fontijn, J. Cryst. Growth107, 274 (1991).CrossRefGoogle Scholar
  15. 15.
    W. H. Cheng, H. Kuwamoto, A. Appelbaum, D. Renner and S. W. Zehr, J. Appl. Phys.69, 1862 (1991).CrossRefGoogle Scholar
  16. 16.
    T. Wolf, A. Krost, D. Bimberg, F. Reier, P. Harde, J. Winterfeld and H. Schumann, J. Cryst. Growth107, 381 (1991).CrossRefGoogle Scholar
  17. 17.
    G. Laube, A. Nowitzki, K. Dütting and P. Speier, J. Cryst. Growth107, 156 (1991).CrossRefGoogle Scholar
  18. 18.
    M. Yamada, P. K. Tien, R. J. Martin, R. E. Nahory and A. A. Ballman, Appl. Phys. Lett.43, 504 (1983).Google Scholar
  19. 19.
    C. Blaauw and L. Hobbs, Appl. Phys. Lett.59, 674 (1991).CrossRefGoogle Scholar
  20. 20.
    E. Silberg, T. Y. Chang, E. A. Caridi, C. A. Evans, Jr. and C. J. Hitzman, Int. Symp. GaAs and Related Compounds, Albuquerque 1982; Inst. Phys. Conf. Ser. No 65, 187 (1983).Google Scholar
  21. 21.
    E. Silberg, T. Y. Chang, E. A. Caridi, C. A. Evans, Jr.and C. J. Hitzman, J. Vac. Sci. Technol.B1, 178 (1983).Google Scholar
  22. 22.
    C. Blaauw, F. R. Shepherd, C. J. Miner and A. J. SpringThorpe, J. Electron. Mater.19, 1 (1990).CrossRefGoogle Scholar
  23. 23.
    W. Walukiewicz, J. Lagowski, L. Jastrzebski, P. Rava, M. Lichtensteiger, C. H. Gatos and H. C. Gatos, J. Appl. Phys.51, 2659 (1980).CrossRefGoogle Scholar

Copyright information

© The Mineral, Metal & Materials Society,Inc. 1992

Authors and Affiliations

  • C. Blaauw
    • 1
  • B. Emmerstorfer
    • 1
  • D. Kreller
    • 1
  • L. Hobbs
    • 1
  • A. J. Springthorpe
    • 1
  1. 1.Bell-Northern ResearchOttawaCanada

Personalised recommendations