Skip to main content
Log in

Ultra-low temperature OMVPE of InAs and InAsBi

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

InAs and InAsBi have been grown by atmospheric pressure organometallic vapor phase epitaxy (OMVPE) over a broad temperature range from 600 to as low as 275° C. This is the lowest growth temperature ever reported for conventional OMVPE. It is demonstrated that lowering the growth temperature is the most effective approach for increasing the maximum Bi content in InAsBi alloys where the Bi solubility limit is 0.025 at.%. For example, InAsBi samples with Bi concentrations as high as 6.1 at.% have been successfully grown at a temperature of 275° C. Trimethylindium, arsine, and trimethylbismuth were used as precursors for most experiments. The growth efficiency is a constant for temperatures above 400° C, indicating that the growth rate is diffusion limited. For lower temperatures, it decreases exponentially with decreasing temperature with an activation energy of 24 kcal/mol. Incomplete pyrolysis of TMIn limits the growth rate in this temperature regime. By substituting ethyldimethylindium for TMIn the growth rate can be increased at lower temperatures. Hall effect measurements show that then-type background concentration increases from approximately 2.3 × 1016 to 1019 cm−3 as the growth temperature decreases from 600 to 325° C. Secondary ion mass spectroscopy results show that the dominant impurity is carbon. Thus, carbon is mainly a donor in these materials. The integrated photoluminescence intensity drops rapidly with decreasing growth temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Harbeke, O. Madelung and U. Rossler, Landolt-Bornstein17a, ed. O. Madelung (Springer-Verlag, Berlin, 1982).

    Google Scholar 

  2. K. Y. Ma, Z. M. Fang, D. H. Jaw, R. M. Cohen, G. B. Stringfellow, W. P. Kosar and D. W. Brown, Appl. Phys. Lett.55, 2420 (1989).

    Article  CAS  Google Scholar 

  3. Z. M. Fang, K. Y. Ma, R. M. Cohen and G. B. Stringfellow, J. Appl. Phys.68, 1187 (1990).

    Article  CAS  Google Scholar 

  4. R. D. Grober, H. D. Drew, J.-I. Chyi, S. Kalem and H. Morkoç, J. Appl. Phys.65, 4079 (1989).

    Article  CAS  Google Scholar 

  5. M. Yono, M. Nogami, Y. Matsushimas and M. Kimata, Jn. J. Appl. Phys.16, 2131 (1977).

    Google Scholar 

  6. B. T. Meggitt, E. H. C. Parker and R. M. King, Appl. Phys. Lett.33, 528 (1978).

    Article  CAS  Google Scholar 

  7. K. Tamamura, K. Akimoto and Y. Mori, J. Cryst. Growth94, 1174 (1989).

    Article  Google Scholar 

  8. M. A. Tischler and S. M. Bedair, J. Cryst. Growth77, 89 (1986).

    Article  CAS  Google Scholar 

  9. M. Kamp, M. Weyers, H. Heinecke, H. Luth and P. Balk, J. Cryst. Growth105, 178 (1990).

    Article  CAS  Google Scholar 

  10. K. Y. Ma, Z. M. Fang, R. M. Cohen and G. B. Stringfellow, J. Appl. Phys.68, 4586 (1990).

    Article  CAS  Google Scholar 

  11. K. Y. Ma, Z. M. Fang, R. M. Cohen and G. B. Stringfellow, J. Cryst. Growth107, 416 (1991).

    Article  CAS  Google Scholar 

  12. C. A. Larsen, S. H. Li, N. I. Buchan and G. B. Stringfellow, J. Cryst. Growth102, 126 (1990).

    Article  CAS  Google Scholar 

  13. G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy, Theory and Practice (Academic Press, San Diego, 1989), Ch. 6, pp. 239–247.

    Google Scholar 

  14. G. B. Stringfellow, in Semiconductors and Semimetals Vol. 22, A, ed. W. T. Tsang (Academic Press, Orlando, 1985), pp. 209–259.

    Google Scholar 

  15. G. B. Stringfellow, Organometallic Vapor-Phase Epitaxy, Theory and Practice (Academic Press, San Diego, 1989), Ch. 2.

    Google Scholar 

  16. S. J. W. Price, in Comprehensive Chemical Kinetics, Sec. 2, Vol. 4, ed. C. H. Bamford and C. F. H. Tipper, (Elsevier publishing Co. Amsterdam, 1972) Ch. 4, pp. 197–257.

    Google Scholar 

  17. H. Ito and T. Ishibashi, in Impurity, Defects, and Diffusion in Semiconductors: Bulk and Layered Structures, ed. D. J. Wolford, J. Bernholc and E. E. Haller (Vol. 163, Mat. Res. Soc. Symp. Proa, Boston, MA, 1989), p. 887.

    Google Scholar 

  18. A. Baldereschi and N. C. Lipari, Phys. Rev.B3, 439 (1971).

    Google Scholar 

  19. A. Mooradian and H. Y. Fan, Proc. Seventh Int. Conf. Phys. Semicond., Paris, 1964 (Academic Press, New York, 1965), Vol. 4, p. 39.

    Google Scholar 

  20. A. V. Varfolomeev, R. P. Scisyan and R. N. Takimova, Sov. Phys. Semicond.9, 530 (1975).

    Google Scholar 

  21. J. I. Pankove, Optical Process in Semiconductors (Dover Publications, Inc., New York, 1971).

    Google Scholar 

  22. P. J. Dean, J. C. Tsang and P. T. Lansberg, Bull. Am. Phys. Soc.13, 404 (1968).

    Google Scholar 

  23. C. C. Hsu, J. S. Yuan, R. M. Cohen and G. B. Stringfellow, J. Cryst. Growth74, 535 (1986).

    Article  CAS  Google Scholar 

  24. M. J. Cherng, Ph.D. thesis, University of Utah, 1987.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, K.Y., Fang, Z.M., Cohen, R.M. et al. Ultra-low temperature OMVPE of InAs and InAsBi. J. Electron. Mater. 21, 143–148 (1992). https://doi.org/10.1007/BF02655829

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02655829

Key words

Navigation