Advertisement

ZDM

, Volume 37, Issue 2, pp 109–115 | Cite as

Cultural and linguistic problems in the use of authentic textbooks when teaching mathematics in a foreign language

  • Jarmila Novotná
  • Hana Moraová
Analyses

Abstract

This paper is a part of a longitudinal study focusing on qualitative aspects of learning in a foreign language in the development of cognitive processes in mathematics. The aim of the paper is to present a more complex analysis of textbook-based obstacles to communication. These obstacles originate in the process of vocabulary and grammar acquisition within a particular multicultural and sociocultural context. The study was carried out using mathematics textbooks from English-speaking countries which are used when teaching mathematics in English to Czech students.

Keywords

Teaching Mathematic Foreign Language Language Proficiency Ordinary Language Mathematics Textbook 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Castell, S.; Luke, A.; Luke, C. (Eds.) (1989). Language, authority and criticism: readings on the school textbook.— London: Falmer Press.Google Scholar
  2. Haggarty, L.; Pepin, B. (2002): An investigation of mathematics textbooks and their use in English, French and German classrooms: who gets an opportunity to learn what?—In: British Educational Research Journal 28(4) p. 567~590.Google Scholar
  3. Halliday, M.A.K.; Hasan, R. (1985): Language, context, and text: aspects of language in a social-semiotic perspective.— Oxford: Oxford University Press.Google Scholar
  4. Harries, T.; Sutherland, R. (2000): The representation of mathematical concepts in primary mathematics textbooks: a focus on multiplication.—In: A. Rogerson (Ed.), Mathematics for living: The mathematics education into the 21st century project. Amman, Jordan, p. 142–146.Google Scholar
  5. Hejný, M.; Beneová, M.; Bereková, H.; Bero, P.; Hrdina, A.; Repá, V.; Vantuch, J. (1990): Teória vyučovania matematice. (Theory of Mathematics Education)—Bratislava: SPN.Google Scholar
  6. Hofmannová, M.; Novotná, J. (2002): Implementing CLIL: Teaching mathematics in English to Czech learners. Paper presented at the Multilingual Mathematics Meeting, Norwich, UK.Google Scholar
  7. Gorgorió, N.; Planas, N. (2002): Teaching mathematics in multilingual classrooms.—In: Educational Studies in Mathematics 47 p. 7~33.Google Scholar
  8. Kubínová, M. (1999): Moji žáci a já (a matematika). (My students and I.)—In: M. Hejný, D. Hrubý, H. Lišková, N. Stehliková, V. Sýkora (Eds.), Shorník Jak učit matematice žáky ve věku 10~15 let. Praha: Prometheus, p. 42–57.Google Scholar
  9. Kubínová, M.; Barešová, M.; Hanušová, J. (2000): How teachers' beliefs influence mathematical lessons?—In: A. Ahmed, J.M. Kraemer, H. Williams (Eds.), Cultural diversity in mathematics (education): CIEAEM 51., Chichester: Horwood Publishing Limited, p. 265–270.Google Scholar
  10. Kubinová, M.; Mareš, J.; Novotná, J. (2000): Changing teaching methods in school, mathematics: an analysis of some episodes from classes.—In: T. Nakahara, Tadao and M. Koyama (Eds.), Proceedings of PME 24, Volume 3. Hiroshima: Hiroshima University, p. 183–190.Google Scholar
  11. Mestre, J.P. (1988). The role of language comprehension in mathematics and problem solving.—In: R.R. Cocking and J.P. Mestre (Eds.), Linguistic and cultural influences on learning mathematics. Hillsdale, NJ: Lawrence Erlbaum, p. 201–220.Google Scholar
  12. Novotná, J. (2000): Analýza řešeni slovních úloh.—Praha: UK-PedF).Google Scholar
  13. Novotná, J.; Hadj-Moussová, Z.; Hofinannová, M. (2001): Teacher training for CLIL—Competences of a CLIL teacher.— In: M. Hejný and J. Novotná (Eds.), Proceedings of SEMT 01. Praha: Univerzita Karlova v Praze, Pedagogická fakulta, p. 122–126.Google Scholar
  14. Novotná, J.; Hofimannová, M.; Petrová, J. (2002): Using games in teaching mathematics through a foreign language.—In: L. Bazzini and I. Whybrow (Eds.), Proceedings of CIEAEM 53, Verbania: Glusetti, e Corvi Editori, p. 353–358.Google Scholar
  15. Pimm, D. (1987): Speaking mathematically: communication in mathematics classrooms.—London: Routledge and Kegan Paul.Google Scholar
  16. Pirie, S. (1998): Crossing the gulf between thought, and symbol: language, as (slippery) stepping-stones.—In: H. Steinbring, M. Bartolini Bussi and A. Sierpinska (Eds.), Language and communication in the mathematics classroom. Reston, VA: NCTM, p. 7–29.Google Scholar

Textbooks

  1. Byfield, S. (1990a): Introductory calculus.—Perth: Mathematical Association of Western Australia.Google Scholar
  2. Byfield, S. (1990b): Discrete mathematics—Perth: Mathematical Association of Western, Australia.Google Scholar
  3. Eischolz, R.; O'Daffer, P.E.; Fleenor, C.R. (1985): Mathematics. Addison-Wesley Publishing Company.Google Scholar
  4. Hull, L. W. H.; Haywood, F. (1965): Elementary Mathematical Ideas. London: Chatto & Windus.Google Scholar
  5. Hutchinson, T. (1998): New hotline—starter.—Oxford: Oxford University Press.Google Scholar

Copyright information

© ZDM 2005

Authors and Affiliations

  • Jarmila Novotná
    • 1
  • Hana Moraová
    • 2
  1. 1.Pedagogická fakulta, M.D.Univerzita Karlova v PrazePraha 1Czech Republic
  2. 2.Literárni akademie-Soukromá vysoká škola Josefa Škvoreckého s.r.o.Praha 4Czech Republic

Personalised recommendations