Advertisement

Journal of Electronic Materials

, Volume 21, Issue 7, pp 763–767 | Cite as

Hydrogen model for radiation-induced interface states in SiO2-on-Si Structures: A review of the evidence

  • David L. Griscom
Article

Abstract

A brief review is given of the evidence supporting the “hydrogen model” of interface trap generation in silicon-based MOS structures. Emphasis is placed on the importance of electron spin resonance (ESR) in identifying and quantifying certain crucial defect species, including atomic hydrogen, self-trapped holes, and the interface trap itself — theP b center. Three types of experiments are considered: (1) low-temperature irradiation and isochronal anneals, (2) pulse radiolysis at room temperature, and (3) exposure of previously-irradiated devices to hydrogen gas. These disparate types of data are all reasonably accounted for by a unified model involving the production of H+ and/or H0 species in the oxide which subsequently drift to the interface where they react with hydrogen-passivated dangling bonds to formP b centers.

Key words

Radiation damage in MOS radiolytic hydrogen species in oxides hydrogen model for interface trap generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. H. Poindexter and P. J. Caplan, Prog. Surf. Sci.14, 201 (1983).CrossRefGoogle Scholar
  2. 2.
    P. M. Lenahan and P. V. Dressendorfer, J. Appl. Phys.54, 1457 (1983).CrossRefGoogle Scholar
  3. 3.
    P. M. Lenahan and P. V. Dressendorfer, J. Appl. Phys.55, 3495 (1984).CrossRefGoogle Scholar
  4. 4.
    R. H. Silsbee, J. Appl. Phys.32, 1459 (1961).CrossRefGoogle Scholar
  5. 5.
    D. L. Griscom, in Glass: Science and Technology Vol. 4B, eds. D. R. Uhlmann and N. J. Kreidl (Academic Press, Boston, 1990), p. 151.Google Scholar
  6. 6.
    F. B. McLean, IEEE Trans. Nucl. Sci.NS-27, 1651 (1980).CrossRefGoogle Scholar
  7. 7.
    G. J. Hu and W. C. Johnson, J. Appl. Phys.54, 1441 (1983).CrossRefGoogle Scholar
  8. 8.
    N. S. Saks, R. B. Klein, and D. L. Griscom, IEEE Trans. Nucl. Sci.NS-35, 1234 (1988).CrossRefGoogle Scholar
  9. 9.
    N. S. Saks, R. B. Klein, S. Yoon and D. L. Griscom, J. Appl. Phys.70, 7434 (1991).CrossRefGoogle Scholar
  10. 10.
    R. A. Weeks and M. M. Abraham, J. Chem. Phys.42, 68 (1965).CrossRefGoogle Scholar
  11. 11.
    D. L. Griscom, Phys. Rev. B40, 4224 (1989).CrossRefGoogle Scholar
  12. 12.
    D. L. Griscom, J. Non-Cryst. Solids (in press), 1992.Google Scholar
  13. 13.
    K. L. Brower, P. M. Lenahan and P. V. Dressendorfer, Appl. Phys. Lett.41, 251 (1982).CrossRefGoogle Scholar
  14. 14.
    E. Harari, S. Wang, and B. S. H. Royce, J. Appl. Phys.46, 1310 (1975).CrossRefGoogle Scholar
  15. 15.
    T. E. Tsai, D. L. Griscom and E. J. Friebele, Phys. Rev. B40, 6374 (1989).CrossRefGoogle Scholar
  16. 16.
    D. L. Griscom, J. Appl. Phys.58, 2524 (1985).CrossRefGoogle Scholar
  17. 17.
    D. L. Griscom, D. B. Brown, and N. S. Saks, in The Physics and Chemistry of SiO2 and the Si-SiO2 Interface, eds. C. R. Helms and B. E. Deal (Plenum Publishing Corp., New York, 1988), p. 287.Google Scholar
  18. 18.
    A. G. Revesz, J. Electrochem. Soc.126, 122 (1979).CrossRefGoogle Scholar
  19. 19.
    K. L. Brower, Phys. Rev. B38, 9657 (1988).CrossRefGoogle Scholar
  20. 20.
    K. L. Brower, Phys. Rev. B42, 3444 (1990).CrossRefGoogle Scholar
  21. 21.
    K. L. Brower and S. M. Myers, Appl. Phys. Lett.57, 162 (1990).CrossRefGoogle Scholar
  22. 22.
    CRC Handbook of Chemistry and Physics, ed. R. C. Weast (CRC, Boca Raton, FL, 1980), p. F-225Google Scholar
  23. 23.
    N. Azuma, T. Miyazaki, K. Fueki, I. Sakaguchi and S.-I. Hirano, J. Am. Ceram. Soc.69, 19 (1986).CrossRefGoogle Scholar
  24. 24.
    N. S. Saks and D. B. Brown, IEEE Trans Nucl. Sci.36, 1848 (1989).CrossRefGoogle Scholar
  25. 25.
    N. S. Saks and D. B. Brown, IEEE Trans. Nucl. Sci.37,1624 (1990).CrossRefGoogle Scholar
  26. 26.
    D. B. Brown and N. S. Saks, J. Appl. Phys.70, 3734 (1991).CrossRefGoogle Scholar
  27. 27.
    F. J. Feigl, R. Gale, H. Chew, C. W. Magee and D. R. Young, Nucl. Instruments & MethodsB1, 348 (1984).CrossRefGoogle Scholar
  28. 28.
    F. J. Feigl, D. R. Young, D. J. DiMaria, S. Lai and J. Calise, J. Appl. Phys.52, 5665 (1981).CrossRefGoogle Scholar
  29. 29.
    R. A. Kohler, R. A. Kushner and K. H. Lee, IEEE Trans. Nucl. Sci.NS-35, 1492 (1988).CrossRefGoogle Scholar
  30. 30.
    R. E. Stahlbush, B. J. Mrstik and R. K. Lawrence, IEEE Trans. Nucl. Sci.NS-37, 1641 (1990).CrossRefGoogle Scholar
  31. 31.
    R. E. Stahlbush, A. H. Edwards, D. L. Griscom and B. J. Mrstik, J. Appl. Phys. (submitted).Google Scholar
  32. 32.
    R. E. Stahlbush and A. H. Edwards, in The Physics and Chemistry of SiO2 and the Si/SiO2 Interface, eds. C. R. Helms and B. E. Deal (submitted), 1992.Google Scholar
  33. 33.
    D. L. Griscom, C. J. Brinker, and R. A. B. Devine, (to be published).Google Scholar

Copyright information

© TMS 1992

Authors and Affiliations

  • David L. Griscom
    • 1
  1. 1.Naval Research Laboratory

Personalised recommendations