Advertisement

Journal of Materials Engineering and Performance

, Volume 3, Issue 1, pp 111–113 | Cite as

Investigation of fatigue failure of a stainless steel orthopedic implant device

  • M. Sivakumar
  • U. Kamachi Mudali
  • S. Rajeswari
Failure Analysis

Abstract

An orthopedic implant (rush nail) fractured in a patient at a location that corresponded to the site of a prior fracture of the bone (right femur). The crack propagation in the implant proceeded from both sides of the nail, and the final fracture occurred by ductile shear in the midsection of the nail. Dimple structures and tear ridges between fatigue striation patches were observed on the fractured surface. Moreover, the device fractured within a short period of use. Contrary to post-procedure instructions, the patient placed the body’s full weight on the implanted leg at least once, perhaps twice, causing overload-induced fatigue failure of the implant.

Keywords

fatigue failure implant device overload failure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.F. Williams,J. Mater. Sci., Vol 22, 1987, p 3421CrossRefGoogle Scholar
  2. 2.
    T.-P. Cheng, W.-T. Tasai, and J.-T. Lee,J. Mater. Sci., Vol 25, 1990, p 936CrossRefGoogle Scholar
  3. 3.
    K. Nielsen,Brit. Corns. J., Vol 22(No.4), 1987, p 272CrossRefGoogle Scholar
  4. 4.
    O.E.M. Pohler and F. Straumann, Fatigue and Corrosion Fatigue Studies on Stainless Steel Implant Material, inEvaluation of Biomaterials, CD. Winter et al., Ed., John Wiley & Sons, 1980Google Scholar
  5. 5.
    J.R. Cahoon and H.W. Paxton,J. Biomed. Mater. Res., Vol 4, 1970, p 223CrossRefGoogle Scholar
  6. 6.
    V.J. Colagelo and N.D. Greene,J. Biomed. Mater. Res., Vol 3, 1969, p 247CrossRefGoogle Scholar
  7. 7.
    A. Fraker and CD. Griffin, Ed.,Corrosion and Degradation of Implant Materials, STP 859, American Society for Testing and Materials, 1985Google Scholar
  8. 8.
    R.J. Gray,Biomed. Mater. Res. Symp., Vol 5, 1974, p 27CrossRefGoogle Scholar
  9. 9.
    A.N. Hughes and B.A. Jordan,J. Biomed. Mater. Res., Vol 6, 1972, p 33CrossRefGoogle Scholar
  10. 10.
    Metals Handbook, Fractography and Atlas of Fractography, Vol 9, 8th ed., American Society for Metals, 1974, p 27Google Scholar
  11. 11.
    Metals Handbook, Metallography, Structures and Phase Diagrams, Vol 8, 8th ed., American Society for Metals, 1973, p 97Google Scholar
  12. 12.
    Annual Book of ASTM Standards, Metallography, Nondestructive Testing. E-384-73, Part II, R.P. Luckens, Ed., American Society for Testing and Materials, 1980Google Scholar
  13. 13.
    H.S. Mueller and E.H. Greener,J. Biomed. Mater. Res., Vol 4, 1970, p 29CrossRefGoogle Scholar

Copyright information

© ASM International 1994

Authors and Affiliations

  • M. Sivakumar
    • 1
  • U. Kamachi Mudali
    • 1
  • S. Rajeswari
    • 2
  1. 1.Department of Analytical ChemistryUniversity of MadrasMadrasIndia
  2. 2.Metallurgy DivisionIndira Gandhi Centre for Atomic ResearchKalpakkamIndia

Personalised recommendations