Metallurgical Transactions B

, Volume 12, Issue 2, pp 319–326 | Cite as

The effects of nucleation and growth on the reduction of Fe2O3 to Fe3O4

  • P. C. Hayes
  • P. Grieveson
Solid State Reactions


The kinetics of reduction of hematite powder to magnetite in CO-CO2 gas mixtures at temperatures between 500 and 663 °C have been measured. The reactions are described in terms of a simple nucleation and growth model. The chemical reaction rate constants for the reduction of hematite to magnetite are obtained and the nucleation frequencies of magnetite on hematite are calculated for a range of temperatures and oxygen partial pressures. A possible technique for the improvement of the “reducibility” of dense hematite ores is suggested.


Magnetite Metallurgical Transaction Hematite Product Phase Wustite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Brill-Edwards, B. L. Daniell, and R. L. Sammer:J. Iron Steel Inst., 1965 vol. 203, pp. 361–68.Google Scholar
  2. 2.
    P. R. Swann and N. J. Tinghe:Met. Trans. B, 1977, vol. 8B, pp. 479–87.Google Scholar
  3. 3.
    J. R. Porter and P. R. Swann:Ironmaking Steelmaking, 1977, vol. 5, pp. 300–07.Google Scholar
  4. 4.
    W. Pluschkell and H. Yoshikoshi:Arch. Eisenhuttenwes., 1970, vol. 41, pp. 715–21.Google Scholar
  5. 5.
    H. Yoshikoshi, M. Tokuda andM. Ohtani:J. Jpn. Inst. Met., 1972, vol. 36, pp. 1093–2000.Google Scholar
  6. 6.
    Y. K. Rao:Scr. Metall., 1974, vol. 8, pp. 877–82.CrossRefGoogle Scholar
  7. 7.
    W. Pluschkell and B. V. S. Sarma:Arch. Eisenhuttenwes., 1973, vol. 44, pp. 161–66.Google Scholar
  8. 8.
    A. Endom, K. Hedden and G. Lehmann:Arch. Eisenhuttenwes., 1964, vol. 35, pp. 577–84.Google Scholar
  9. 9.
    H. Bottlicher, L. Von Bogdandy, E. Forster and U. Schierloh:Z. Phys. Chem. N. F., 1967, vol. 53, pp. 240–55.Google Scholar
  10. 10.
    E. Forster, U. Schierloh and L. Smeets:Arch. Eisenhuttenwes., 1969, vol. 40, pp. 535–39.Google Scholar
  11. 11.
    W. Morawietz and H. D. Schaefer:Arch. Eisenhuttenwes., 1969, vol. 40, pp. 523–30.Google Scholar
  12. 12.
    W. M. McEwan:Trans. TMS-AIME, 1958, vol. 212, pp. 791–93.Google Scholar
  13. 13.
    W. A. Johnson and R. F. Mehl:Trans. AIME, 1939, vol. 135, pp. 416-^2.Google Scholar
  14. 14.
    M. Avrami:J. Chem. Phys., 1939 vol. 7, pp. 1103–12.CrossRefGoogle Scholar
  15. 15.
    J. W. Cahn:Ada Metall., 1956, vol. 4, pp. 572–75.CrossRefGoogle Scholar
  16. 16.
    P. C. Hayes,Met. Trans. B, 1979, vol. 10B, pp. 489–96.Google Scholar
  17. 17.
    L. Von Bogdandy and H. J. Engell:The Reduction of Iron Ores, Springer, Berlin, 1971.Google Scholar
  18. 18.
    D. R. Sain and G. R. Belton:Met. Trans. B, 1976, vol. 7B, pp. 235–14.Google Scholar
  19. 19.
    P. C. Hayes and P. Grieveson:British Steel Corp. Research Fellowship, Final Report, British Steel Corp., London 1975.Google Scholar
  20. 20.
    A. V. Bradshaw:Trans. Inst. Min. Met. C, 1970, vol. 79, pp. 281–84.Google Scholar

Copyright information

© American Society for Metals and the Metallurgical Society of AIME 1981

Authors and Affiliations

  • P. C. Hayes
    • 1
  • P. Grieveson
    • 2
  1. 1.Department of Mining & Metallurgical EngineeringUniversity of QueenslandBrisbaneAustralia
  2. 2.Metallurgy DepartmentImperial CollegeLondonUK

Personalised recommendations