Metallurgical Transactions B

, Volume 12, Issue 3, pp 539–547 | Cite as

Slag-metal equilibrium during submerged arc welding

  • C. S. Chai
  • T. W. Eagar
Physical Chemistry


A thermodynamic model of the equilibria existing between the slag and the weld metal during submerged arc welding is presented. As formulated, the model applies only to fused neutral fluxes containing less than 20 pct CaF2, however some results indicate that the model may be useful in more general cases as well. The model is shown to be capable of predicting the gain or loss of both Mn and Si over a wide range of baseplate, electrode and flux compositions. At large deviations from the predicted equilibrium, the experimental results indicate considerable variability in the amount of Mn or Si transferred between the slag and metal phases, while closer to the calculated equilibrium, the extent of metal transfer becomes more predictable. The variability in metal transfer rate at large deviations from equilibrium may be explained by variations between the bulk and the surface concentrations of Mn and Si in both metal and slag phases.


Welding Metallurgical Transaction Weld Metal Weld Pool Flux System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Christensen and J. Chipman:Weld. Res. Courte. Bull., January 1953, no. 15.Google Scholar
  2. 2.
    R. A. Kubli and W. B. Sharav:Weld. J., 1961, vol. 40, no. 11, p. 497-s.Google Scholar
  3. 3.
    G. R. Belton, T. J. Moore, and E. S. Tankins:Weld. J., 1963, vol. 42, no. 7, p. 289-s.Google Scholar
  4. 4.
    W. J. Lewis and P. J. Rieppel:Weld. J., 1961, vol. 40, no. 8, p. 337-s.Google Scholar
  5. 5.
    N. Christensen: Report AD-602138, NTIS, Arlington, VA, November, 1965.Google Scholar
  6. 6.
    C. A. Butler and C. E. Jackson:Weld. J., 1967, vol. 46, p. 448-s.Google Scholar
  7. 7.
    T. H. North, H. B. Bell, A. Nowicki, and I. Craig:Weld.J., 1978, vol. 57, no. 3, p. 63-s.Google Scholar
  8. 8.
    T. H. North:Weld. Res. Abroad, January 1977, vol. 23, no. 1, p. 2.Google Scholar
  9. 9.
    C. E. Jackson:Weld. Res.Counc, December 1973, no. 190.Google Scholar
  10. 10.
    J. G. Garland and N. Bailey: M/84/75 The Welding Institute, Abington, England, 1975.Google Scholar
  11. 11.
    J. H. Palm:Weld.J., 1972, vol. 51, no. 7, p. 358-s.Google Scholar
  12. 12.
    T. Boniszewski:Met. Const. Br. Weld. J., 1974, vol. 6, p. 128.Google Scholar
  13. 13.
    T. W. Eagar:Weld. J., 1978, vol. 57, no. 3, p. 76-s.Google Scholar
  14. 14.
    T. W. Eagar:Weldments: Physical Metallurgy and Failure Phenomena, R. J. Christofel, E. F. Nippes, and H. D. Solomon, eds., p. 31, General Electric Co., Schenectady, NY, 1979.Google Scholar
  15. 15.
    B. A. Korh:Autom. Weld., 1977, vol. 30, no. 7, p. 16.Google Scholar
  16. 16.
    J. D. Cobine and E. D. Burger:J. Appl. Phys., 1955, vol. 26, no. 7, p. 895.CrossRefGoogle Scholar
  17. 17.
    O. H. Nestor:J. Appl. Phys., 1962, vol. 33, no. 5, p. 1638.CrossRefGoogle Scholar
  18. 18.
    S. S. Tuliani, T. Boniszewski, and N. F. Eaton:Weld. Met. Fabr., 1969, vol. 37, no 8, p. 327.Google Scholar
  19. 19.
    B. G. Renwick and B. M. Patchett:Weld. J., 1976, vol. 55, no. 3, p. 69-s.Google Scholar
  20. 20.
    J. G. Garland and P. R. Kirkwood:Welding of Line Pipe Steels, K. H. Koopman, ed., p. 176, Welding Research Council, New York, 1977.Google Scholar
  21. 21.
    S. F. Baumann, J. R. Sawhill, and M. Nakabayashi:ibid, p. 56.Google Scholar
  22. 22.
    W. K. C. Jones:Weld. J., 1976, vol. 55, no. 2, p. 42-s.Google Scholar
  23. 23.
    A. P. Bennett and P. J. Stanley:Br. Weld. J., 1966, vol. 13, no. 2, p. 59.Google Scholar
  24. 24.
    G. Uttrachi: private communication, Union Carbide Corp., Astabula, OH, 1977.Google Scholar
  25. 25.
    J. G. Garland and P. R. Kirkwood:Weld. Met. Fabr., 1976, vol. 44, no. 4, p. 217.Google Scholar
  26. 26.
    N. Bailey:Weld. Res. Int., 1978, vol. 8, no. 3, p. 215.Google Scholar
  27. 27.
    J. G. Garland and N. Bailey:ibid, 1978, p. 240.Google Scholar
  28. 28.
    C. S. Chai and T.W. Eagar: unpublished research, MIT, Cambridge, MA, 1977.Google Scholar
  29. 29.
    C. S. Chai and T. W. Eagar:Weld. J., 1980, vol. 59, no. 3, p. 93-s.Google Scholar
  30. 30.
    J. F. Elliott, M. Gleiser, and V. Ramakrisna:Thermochemistry for Steelmaking, Vol. II, Addison Wesley Publishing Co., Reading, MA, 1963.Google Scholar
  31. 31.
    F. D. Richardson:Physical Chemistry of Melts in Metallurgy, Vol. I, Academic Press, NY 1974.Google Scholar
  32. 32.
    N. Christensen:Jernkontorets Ann., 1977, vol. JkA-77, no. 5, p. 4.Google Scholar
  33. 33.
    H. Fujita and S. Maruhaski:Tetsu To Hagane, 1970, vol. 56, p. 830.Google Scholar
  34. 34.
    S. Maruhashi:Tetsu To Hagane, 1971, vol. 57, p. 891.Google Scholar
  35. 35.
    R. H. Rein and J. Chipman:Trans. TMS-AIME, 1965, vol. 233, p. 415.Google Scholar
  36. 36.
    E. Martin, O. I. H. Abdelkarim, I. D. Somerville, and H. B. Bell:Metal-Slag-Gas Reactions and Processes, Z. A. Foroulis and W. W. Smeltzer, eds., p. 1, The Electrochemical Society, Princeton, NJ, 1975. 37.The Making, Shaping and Treating of Steel, H. E. McGannon, ed., 9th ed., U.S. Steel, 1971.Google Scholar
  37. 38.
    J. G. Garland and P. R. Kirkwood:Met. Constr., 1975, vol. 7, no. 6, p. 320.Google Scholar
  38. 39.
    H. Thier:Proceedings of the Conference on Weld Pool Chemistry and Metallurgy, p. 271, The Welding Institute, London, April 1980.Google Scholar

Copyright information

© American Society for Metals and the Metallurgical Society of AIME 1981

Authors and Affiliations

  • C. S. Chai
    • 1
  • T. W. Eagar
    • 2
  1. 1.Lincoln Electric Co.Cleveland
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridge

Personalised recommendations