Metallurgical Transactions B

, Volume 18, Issue 3, pp 565–575 | Cite as

Liquid separation effects in Fe−Cu alloys solidified under different cooling rates

  • A. Munitz
Physical Chemistry


The effect of cooling rates on the microstructure of Fe−Cu alloys was investigated. A variety of solidification techniques was employed, in order to obtain a wide range of cooling rates. At high cooling rates (about 104 K/sec), and in the composition range 30 to 80 wt pct Cu, the microstructures showed clear evidence of metastable liquid separation. This indicates a melt supercooling of about 50 to 100 K. Liquid separation coupled with high interfacial velocities resulted in solute trapping, and in a spherical morphology for one of the solids. At cooling rates lower than 104 K/sec no liquid separation was observed, and the alloys solidified in a conventional manner,i.e., with a polycrystalline or a dendritic microstructure, depending on the Cu content. The type of the γ-Fe to α-Fe solid state transformation, taking place during cooling after solidification, depends on the cooling rates as well as on the Cu content in the γ-Fe phase. At medium cooling rates the transformation is martensitic, while at low or high cooling rates a polycrystalline transformed structure is obtained.


Cool Rate Metallurgical Transaction High Cool Rate Molten Pool Secondary Electron Image 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Duwez, R. H. Willens, and W. Klement:J. Appl. Phys., 1960, vol. 31, p. 1136.CrossRefGoogle Scholar
  2. 2.
    H. Jones: “Treatise on Materials Science and Technology”, H. Herman, ed., Academic Press, New York, NY, 1981, vol. 20, p. I.Google Scholar
  3. 3.
    Rapid Solidification Processing: Principles and Technologies, R. Mehrabian, B. H. Kear, and M. Cohen, eds., Claitor's Publishing Division, Baton Rouge, LA, 1978.Google Scholar
  4. 4.
    Rapid Solidification Processing: Principles and Technologies II, R. Mehrabian, B. H. Kear, and M. Cohen, eds., Caitor's Publishing Division, Baton Rouge, LA, 1980.Google Scholar
  5. 5.
    Laser-Solid Interactions and Laser Processing, S. D. Ferris, H. J. Leamy, J. M. Poate, eds., American Institute of Physics, New York, NY, 1978.Google Scholar
  6. 6.
    H. Jones:Aluminium, 1978, vol. 54, p. 274.Google Scholar
  7. 7.
    B. P. Bardes and M. C. Flemings:Trans. AFS, 1966, vol. 74, p. 406.Google Scholar
  8. 8.
    H. Kancko and J. Ikeuchi:Proc. 1st International Conf. on Electrodischarge Machining, Tokyo, Japan, 1965, p. 23.Google Scholar
  9. 9.
    P. Ramachandrarao and M. Laridjani:J. Mater. Sci., 1974, vol. 9, p. 434.CrossRefGoogle Scholar
  10. 10.
    R. Mehrabian:Int. Metals Rev., 1982, vol. 27, p. 185.Google Scholar
  11. 11.
    M. Cohen, B. H. Kear, and R. Mehrabian:Rapid Solidification Processing: Principles and Technologies II, Claitor's Publishing Division, Baton Rouge, LA, 1980, p. 1.Google Scholar
  12. 12.
    M. Cohen and R. Mehrabian: Proc. of “Rapid Solidification Processing: Principles and Technologies III”, R. Mehrabian, ed., Gaithersburg, MD, December 6–8, 1982, p. 45.Google Scholar
  13. 13.
    R. T. Southin and G. M. Weston:J. Australian Institute of Metals, 1974, vol. 19, p. 93.Google Scholar
  14. 14.
    L. M. Hogan:Physics of Materials, D. W. Borland, L. M. Clarebrough, and A. J. M. Moore, eds., University of Melbourne, Australia, 1979, p. 111.Google Scholar
  15. 15.
    L. F. Mondolfo:Grain Refinement in Castings and Welds, G. J. Abbaschian and S. A. David, eds., TMS-AIME, Warrendale, PA, 1982, p. 3.Google Scholar
  16. 16.
    G. J. Abbaschian and M. C. Flemings:Metall. Trans. A, 1983, vol. 14A, p. 1147.Google Scholar
  17. 17.
    T. F. Kelly and J. B. Vander Sande:Chemistry and Physics of Rapidly Solidified Materials, B. J. Berkowitz and R. O. Scattergood, eds., St. Louis, MO, TMS-AIME, October 26–27, 1982, p. 35.Google Scholar
  18. 18.
    D. D. McDevitt and G. J. Abbaschian:Microstructural Science, 1983, vol. 11, p. 125.Google Scholar
  19. 19.
    T. Z. Kattamis:Z. Metallkunde, 1970, vol. 61, pp. 856–60.Google Scholar
  20. 20.
    A. S. Kenneford and C. H. Oxlee:J. of the Iron and Steel Inst., 1967, vol. 200, p. 38.Google Scholar
  21. 21.
    Z. Bojarski, W. Babinski, H. Morawiec, T. Panek, J. Rasek, and D. Stroz:Metals Technology, 1980, vol. 7, p. 248.Google Scholar
  22. 22.
    Y. Chuang, R. Schmid, and Y. A. Chang:Metall. Trans. A, 1984, vol. 15A, p. 1921.Google Scholar
  23. 23.
    O. Kubaschewski, J. F. Smith, D. M. Bailey:Z. Metallkunde, 1977, vol. 68, p. 495.Google Scholar
  24. 24.
    L. J. Swartzendruber: inNoble Metal Alloys, T. B. Massalki, W.B. Pearson, L. H. Bennett, and Y. A. Chang, eds., TMS-AIME, Warrendale, PA, 1986.Google Scholar
  25. 25.
    A. Munitz:Metall. Trans. B, 1985, vol. 16B, p. 149.Google Scholar
  26. 26.
    Z. Livne and A. Munitz: Nuclear Research Center, Negev, P.O. Box 9001, Beer-Sheva, Israel, unpublished research, 1987.Google Scholar
  27. 27.
    Z. Livne: “Structure Phenomena in the Bond Zone of Explosively Bonded Plates”, Nuclear Research Center, Negev, NRCN 464, 1979.Google Scholar
  28. 28.
    S. J. B. Reed:Electron Microprobe Analysis, Cambridge University Press, Cambridge, 1977, pp. 175–97.Google Scholar
  29. 29.
    A. Cibula:J. Inst. of Metals, 1948-50, vol. 76, p. 321.Google Scholar
  30. 30.
    A. Cibula:J. Inst. of Metals, 1953-54, vol. 82, p. 513.Google Scholar
  31. 31.
    G. E. Amaya, J. A. Patchett, and G. J.Abbaschian:Grain Refinement in Castings and Welds, G. J. Abbaschian and S. A. David, eds., TMS-AIME, Warrendale, PA, 1982, p. 51.Google Scholar
  32. 32.
    J. A. Patchett and G. J. Abbaschian:Metall. Trans. B, 1985, vol. 16B. p. 505.Google Scholar
  33. 33.
    A. Munitz:Metall. Trans. B, 1980, vol. 11B, p. 563.Google Scholar
  34. 34.
    Y. Nakagawa:Acta Metall., 1958, vol. 6, p. 704.CrossRefGoogle Scholar
  35. 35.
    R. N. Grugel, T. A. Lograsso, and A. Hellawell:Metall. Trans. A, 1984. vol. 15A, p. 1003.Google Scholar
  36. 36.
    R. N. Grugel and A. Hellawell:Metall. Trans. A, 1981, vol. 12A, p. 669.Google Scholar
  37. 37.
    A. Munitz and G. J. Abbaschian: University of Florida, Department of Materials Science and Eng., Gainesville, FL, unpublished research, 1986.Google Scholar
  38. 38.
    E. Hornbogen and R. C. Glenn:Trans. TMS-AIME, 1960, vol. 218, p. 1064.Google Scholar
  39. 39.
    J. A. Lund and A. M. Lawson:Trans. TMS-AIME, 1966, vol. 236, p. 581.Google Scholar

Copyright information

© The Metallurgical Society and ASM INTERNATIONAL 1987

Authors and Affiliations

  • A. Munitz
    • 1
  1. 1.Nuclear Research Center-NegevBeer-ShevaIsrael

Personalised recommendations