Metallurgical Transactions B

, Volume 14, Issue 4, pp 577–588 | Cite as

Leaching of bornite in acidified ferric chloride solutions

  • B. Pesic
  • F. A. Olson


In an acidified ferric chloride solution, bornite leaches in two stages of reaction with the first being relatively much more rapid than the second; the first terminates at 28 pct copper dissolution. The first-stage dissolution reaction is electrochemical and is mixed kinetics-controlled; ferric-ion transfer through the solution boundary layer and reduction on the surface to release Cu2+ into solution are both important in controlling the rate. The concentration of labile Cu+ in the bornite lattice governs the potential of the surface reaction, and, once Cu+ is depleted from the original bornite, stage-I reaction ceases. The solid reaction intermediate formed is Cu3FeS4. Minute subcrystallites formed at the latter part of stage I leach topochemically in stage II. This reaction which commences at 28 pct Cu dissolution is characterized by a change in mechanism at about 40 pct copper dissolution, though the overall chemical equation for reaction is unchanged in stage II; cupric and ferrous ions and sulfur as a solid residue are products of reaction. The region 28 to about 40 pct Cu dissolution is designated as a transition period to stage-II reaction. Reaction rate in this period is interpreted as being controlled by reduction of Fe3+ on active product sulfur surface sites, and hence the reaction rate is controlled by the rate of nucleation and growth of sulfur on the Cu3FeS4 intermediate surfaces. Strain in the Cu3FeS4 crystal lattice is released during this period by diffusion from the lattice of Cu+ remaining from the labile copper initially present in the bornite. After about 40 pct Cu dissolution the rate of reaction is controlled by diffusion through the fully formed sulfur layer in an equiaxial geometrically controlled reaction.


Metallurgical Transaction Chalcopyrite Salt Lake City Bornite Chalcocite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. J. Vaughan and J. R. Craig:Mineral Chemistry of Metal Sulfides, Cambridge University Press, Cambridge, 1978, pp. 299–304.Google Scholar
  2. 2.
    R. M. Garrels and C. L. Christ:Solutions, Minerals and Equilibria, Freeman, Copper and Co., San Francisco, CA, 1965, pp. 230–33.Google Scholar
  3. 3.
    P. J. Marcantonio: Ph. D. Thesis, University of Utah, Salt Lake City000000, UT, 1976.Google Scholar
  4. 4.
    J.E. Dutrizac:Metall. Trans. B, 1978, vol. 9B, pp. 431–39.Google Scholar
  5. 5.
    J.E. Dutrizac:Metall. Trans. B, 1981, vol. 12B, pp. 371–78.Google Scholar
  6. 6.
    P. B. Munoz: Ph. D. Thesis, University of Utah, Salt Lake City, UT, 1977.Google Scholar
  7. 7.
    V. V. Ermilov, O.B. Tkachenko, and A. L. Tseft:Tr. Inst. Met., Obogashch, Alma Ata, 1969, vol. 30, pp. 3–14.Google Scholar
  8. 8.
    T. Uchida, H. Matsumoto, S. Omorai, and A. Murayama:Hakko Kyokaishi, 1967, vol. 25, pp. 168–72.Google Scholar
  9. 9.
    J.E. Dutrizac and R.J.C. MacDonald:Can. Met. Quart., 1974, vol. 13, pp. 423–33.Google Scholar
  10. 10.
    J.D. Sullivan:Trans. AIME, 1933, vol. 106, pp. 515–46.Google Scholar
  11. 11.
    J.D. Sullivan: U.S. Bureau of Mines Tech. Paper 487, 1930.Google Scholar
  12. 12.
    G. Thomas and T. R. Ingraham:Can. Met. Quart., 1967, vol. 6, pp. 153–65.Google Scholar
  13. 13.
    G. Thomas, T. R. Ingraham, and R.J.C. MacDonald:Can. Met. Quart., 1967, vol. 6, pp. 281–92.Google Scholar
  14. 14.
    J.D. Sullivan: Tech. Paper 486, U.S. Bureau of Mines, 1931.Google Scholar
  15. 15.
    V. V. Stender and L. A. Saltovskaya:Isv. Akad. Kaz. SSR, Ser. Khim, 1951, vol. 101, pp. 90–96.Google Scholar
  16. 16.
    G.A. Kopylov and A.I. Orlov:Izv. Vyssh. Uchebn. Zaved., Tsvet. Metall., 1963, vol. 6, pp. 68–74.Google Scholar
  17. 17.
    J.E. Dutrizac, R.J.C. MacDonald, and T. R. Ingraham:Metall. Trans., 1970, vol. 1, pp. 225–31.Google Scholar
  18. 18.
    J.E. Dutrizac, R.J.C. MacDonald, and T. R. Ingraham:Can. Met. Quart., 1971, vol. 10, pp. 3–7.Google Scholar
  19. 19.
    J. E.Dutrizac and R. J. C. MacDonald : Proc. Australas, Inst. Min. Metall., no. 245, March 1973.Google Scholar
  20. 20.
    A. R. Burkin:Inst. of Min. Metall. Symposium, London, 1975, p. 46.Google Scholar
  21. 21.
    D.F. Lowe: Ph.D. Thesis, Department of Metallurgy and Metallurgical Engineering, University of Arizona, Tucson, AZ, 1970.Google Scholar
  22. 22.
    D.C. Price and J. P. Chilton:Hydrometallurgy, 1980, vol. 5, pp. 381–94.CrossRefGoogle Scholar
  23. 23.
    D.C. Price and J.P. Chilton:Hydrometallurgy, 1981, vol. 7, pp. 117–33.CrossRefGoogle Scholar
  24. 24.
    H. K. Ospanov and E. K. Abetova:Khim. Khim. Tekhnol., 1974, vol. 15, pp. 131–38.Google Scholar
  25. 25.
    H.K. Ospanov and L. N. Siromakha:Prikl. i. Teor, Khimiya, 1973, vol. 4, pp. 106–13.Google Scholar
  26. 26.
    T. Bieszcad:Zesz. Nauk. Univ. Jagiellon., Pr. Chem., 1976, vol. 21, pp. 261–78 (Pol.).Google Scholar
  27. 27.
    B. Pesic and F. A. Olson:Hydrometallurgy, in press.Google Scholar
  28. 28.
    B.Pesic and F. A.Olson: unpublished research, University of Utah, Salt Lake City, UT.Google Scholar
  29. 29.
    B. Pesic: Ph. D. Thesis, University of Utah, Salt Lake City, UT, 1982.Google Scholar
  30. 30.
    P.R. Kruesi, E. S. Allen, and J.L. Lake:CIM Bulletin, June 1973, pp. 81–87.Google Scholar
  31. 31.
    G.W. Warren:J. Metals, 1982, vol. 34, pp. 51–55.Google Scholar
  32. 32.
    M.E. Wadsworth:Rate Processes in Hydrometallurgy, Second Tutorial Symposium on Extractive Metallurgy, AIME, Salt Lake City, UT, 1972.Google Scholar
  33. 33.
    G. Frenzel and J. Otteman:Miner. Deposita, 1967, vol. 1, pp. 307–16.CrossRefGoogle Scholar
  34. 34.
    R.H. Sillitoe and A.H. Clark:Am. Mineral., 1969, vol. 54, pp. 1684–70.Google Scholar
  35. 35.
    G. Constantinou:Amer. Mineral., 1975, vol. 60, pp. 1013–18.Google Scholar
  36. 36.
    C. M. Rice, D. Atkin, J. F. W. Bowles, and J. Criddle:Mineral Mag., 1979, vol. 43, pp. 193–200.CrossRefGoogle Scholar
  37. 37.
    N. Morimoto:Acta Crystallogr., 1964, vol. 17, pp. 351–60.CrossRefGoogle Scholar
  38. 38.
    P.G. Manning:Can. Mineral., 1967–69, vol. 9, pp. 85–94.Google Scholar
  39. 39.
    B. Pesic: M.S. Thesis, University of Utah, Salt Lake City, UT, 1982.Google Scholar
  40. 40.
    G.I. Samalj and M. P. Gilevich:Akad. Navuk BSSR, Minsk, Serija Khim. Navuk, 1978, vol. 1, pp. 126–29.Google Scholar
  41. 41.
    F. J. Ugarte: Ph. D. Thesis, University of London, Imperial College of Science and Technology, London, 1971.Google Scholar
  42. 42.
    A. W. Adamson:Physical Chemistry of Surfaces, 3rd ed., John Wiley and Sons, New York, NY, 1976, pp. 667–71.Google Scholar
  43. 43.
    W. E. Garner:Chemistry of the Solid State, chap. 6, Butterworths, London, 1951.Google Scholar
  44. 44.
    J. Crank:Trans. Faraday Soc., 1957, vol. 53, pp. 1083–91.CrossRefGoogle Scholar
  45. 45.
    A.M. Ginstling and B.I. Brounshtein:Zh. Prikl. Khim., 1950, vol. 23, p. 1249.Google Scholar
  46. 46.
    F.F. Aplan, W. A. McKinney, and A.D. Pernichele:International Solution Mining Symposium, AIME, New York, NY, 1974, pp. 446–69.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1983

Authors and Affiliations

  • B. Pesic
    • 1
  • F. A. Olson
    • 2
  1. 1.Department of Metallurgical and Mining EngineeringUniversity of IdahoMoscow
  2. 2.University of UtahSalt Lake City

Personalised recommendations