Journal of Electronic Materials

, Volume 3, Issue 2, pp 497–515 | Cite as

Dislocations in vapor phase epitaxial GaP

  • G. B. Stringfellow
  • P. F. Lindquist
  • T. R. Cass
  • R. A. Burmeister


Dislocations in VPE GaP grown on (100) oriented LEC GaP substrates have been characterized, and their origins and effects on LED performance have been investigated. In non-nitrogen doped epilayers, the dislocations are found to originate in the substrate and propagate through the epilayers in straight lines in [100] and <211> directions. The dislocation density of the epilayer is found to be nearly equal to that of the substrate. Introduction of nitrogen during growth of the epilayer has been observed to bend these so-called “inclined≓ dislocations propagating through the layer into [0−1 1] directions in the (100) plane and thus produces segments of [0 −1 1] dislocations to relieve the lattice parameter mismatch due to N. The mismatch dislocation density is observed to be proportional to the N doping level. At very high N doping levels, > 1019 cm-3, a large number of new inclined dislocations are observed, which may be in part due to GaN precipitation. The effects of dislocations on LED properties were investigated by measuring dislocation densities in the individual diodes using the electron beam induced current mode of the SEM and comparing this with the spot brightness and luminous flux. The dislocations were observed to produce dark spots in the EL emission in many cases. For a series of runs where all growth and processing parameters were fixed, a good correlation between B/J and dislocation density was observed with B/J decreasing with increasing dislocation density in the range < 1 × 104 cm−2 to 1 × 106 cm−2.

Key words

dislocations GaP VPE GaP green LEDs 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    For a review of the effects of dislocations on semiconductor properties see: J. N. Hobstetter, in Semiconductors, N. B. Hannay, Ed. (Reinhold Publishing Corp., New York, 1960); R. Broudy, Advan. Phys. 12, 135 (1963); and R. G. Rhodes, Imperfections and Active Centers in Semiconductors (Macmillan, New York, 1964)·Google Scholar
  2. 2.
    G. B. Stringfellow and P. E. Greene, J. Appl. Phys. 40_, 502 (1969).CrossRefGoogle Scholar
  3. 3.
    G. A. Rozgonyi and M. A. Afromowitz, Appl. Phys. Lett. 19_, 153 (1971).CrossRefGoogle Scholar
  4. 4.
    H. C. Casey, Jr., J. Electrochem. Soc. 114, 153 (1967).CrossRefGoogle Scholar
  5. 5.
    K. H. Zschauer, Solid State Commun. 7, 335 (1969).CrossRefGoogle Scholar
  6. 6.
    M. G. Craford, W. O. Groves and M. J. Fox, J. Electro-chem. Soc. 118, 355 (1971).CrossRefGoogle Scholar
  7. 7.
    R. A. Chapman, G. R. Cronin and K. R. Carson, J. Electron. Mater. 1, 77 (1972).Google Scholar
  8. 8.
    A. H. Herzog, D. L. Keune and M. G. Craford, J. Appl. Phys. 43, 600 (1972).CrossRefGoogle Scholar
  9. 9.
    G. A. Rozgonyi, T. Iizuka and S. E. Haszko, J. Electro-chem. Soc. 118, 74C (1971).Google Scholar
  10. 10.
    J. J. Tietjen and J. A. Amick, J. Electrochem. Soc. 113, 724 (1966).CrossRefGoogle Scholar
  11. 11.
    R. A. Burmeister, Jr., G. P. Pighini and P. E. Greene, Trans. AIME 245, 587 (1969).Google Scholar
  12. 12.
    S. P. Nygren and G. L. Pearson, J. Electrochem. Soc. 116, 648 (1969).CrossRefGoogle Scholar
  13. 13.
    J. L. Richards and A. J. Crocker, J. Appl. Phys. 31, 611 (1960).CrossRefGoogle Scholar
  14. 14.
    M. S. Abrahams and C. J. Buiocchi, J. Appl. Phys. 36, 2855 (1965).CrossRefGoogle Scholar
  15. 15.
    W. Czaja and J. R. Patel, J. Appl. Phys. 36, 1476 (1965). T. R. Cass, 6th Kent Cambridge Colloquium, Chicago, 111., 1973.CrossRefGoogle Scholar
  16. 17.
    M. S. Abrahams, L. R. Weisberg, C. J. Buiocchi and J. Blanc, J. Mater. Sci. 4, 223 (1969).CrossRefGoogle Scholar
  17. 18.
    T. R. Cass, unpublished results.Google Scholar
  18. 19.
    T. Iizuka, J. Electrochem. Soc., 118, 1190 (1971).CrossRefGoogle Scholar
  19. 20.
    M. S. Abrahams and C. J. Buiocchi, J. Appl. Phys. 37, 1973 (1966).CrossRefGoogle Scholar
  20. 21.
    G. B. Stringfellow, J. Electrochem. Soc. 119, 1780 (1972).CrossRefGoogle Scholar
  21. 22.
    D. G. Thomas and J. J. Hopfield, Phys. Rev. 150, 680 (1966).CrossRefGoogle Scholar
  22. 23.
    E. C. Lightowlers, J. Electron. Mater. 1, 39 (1972).Google Scholar
  23. 24.
    V. S. Ban and M. Ettenberg, J. Phys. Chem. Solids 34, 1119 (1973).CrossRefGoogle Scholar
  24. 25.
    V. S. Ban, J. Electrochem. Soc.118, 1473 (1971).CrossRefGoogle Scholar
  25. 26.
    R. H. Saul, J. Electrochem. Soc. 118, 793 (1971).CrossRefGoogle Scholar
  26. 27.
    F. V. Williams, 1966 Symposium on GaAs: Reading (The Institute of Physics and the Physical Society, London), 1967, p. 27.Google Scholar
  27. 28.
    A. V. Kovda and S. A. Semiletov, Soviet Phys.-Cryst. 13, 561 (1969).Google Scholar
  28. 29.
    G. A. Rozgonyi, A. R. Von Neida, T. Lizuka and S. E. Haszko, J. Appl. Phys. 43, 3141 (1972).CrossRefGoogle Scholar
  29. 30.
    K. Kaneko, M. Ayabe, M. Dosen, K. Morizane, S. Usui and N. Watanabe, Proc. IEEE 61, 884(1973).CrossRefGoogle Scholar
  30. 31.
    S. E. Blum and R. J. Chicotka, Electrochem. Soc. Extended Abstracts for Chicago Meeting, Spring 1973, p. 119.Google Scholar

Copyright information

© American Institute of Mining, Metallurgical, and Petroleum Engineers, Inc 1974

Authors and Affiliations

  • G. B. Stringfellow
    • 1
  • P. F. Lindquist
    • 1
  • T. R. Cass
    • 1
  • R. A. Burmeister
    • 1
  1. 1.Hewlett-Packard LaboratoriesPalo Alto

Personalised recommendations