Advertisement

Metallurgical and Materials Transactions B

, Volume 3, Issue 11, pp 2805–2810 | Cite as

Microstructure and phase relations for Ti-Mo-Al alloys

  • T. Hamajima
  • G. Luetjering
  • S. Weissmann
Alloy Phases and Structure

Abstract

The influence of aluminum additions to a Ti-7 at. pet Mo alloy on the phase equilibria was investigated. The microstructures of the alloys, Ti-7 pct Mo-7 pct Al and Ti-7 pct Mo-16 pct Al, were determined by light and electron microscopy. It was found that with increasing aluminum concentration the formation of the metastable w phase was suppressed. In the Ti-7 pct Mo-16 pct Al alloy the β phase decomposed upon quenching by precipitating coherent, ordered particles having a B2 type of crystal structure (β2). At low temperatures the equilibrium phases for this alloy were β + α+ β2, whereas at high temperature (850° to 950°C) the Ti3Al phase was in two-phase equilibrium with the β phase. The four-phase equilibrium which exists at a temperature of about 550°C involves the reaction β + Ti3Al ⇌ α + β2.

Keywords

Phase Field Operative Reflection Increase Aluminum Concentration Ti3A1 Phase CsC1 Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Sagel, E. Schulz, and U. Zwicker:Z. Metallk., 1956, vol. 47, p. 57.Google Scholar
  2. 2.
    K. Anderko, K. Sagel, and U. Zwicker:Z. Metallk., 1957, vol. 48, p. 57.Google Scholar
  3. 3.
    F. A. Crossley and W. F. Carew:AIME Trans., 1957, vol. 209, p. 43.Google Scholar
  4. 4.
    The Science, Technology and Application of Titanium, R. I. Jaffee and N. E. Promisel, eds., p. 421, Pergamon Press, 1970.Google Scholar
  5. 5.
    M. J. Blackburn:Trans. TMS-AIME, 1967, vol. 239, p. 1200.Google Scholar
  6. 6.
    M. D. Kessler: Armour Res. Found., Report Contract ADI 1-022-ORD-244 to Watertown Arsenal, 1951.Google Scholar
  7. 7.
    H. Margolin, J. P. Nielsen, and H. K. Work: Eng. Res. Div., New York Univ., Final Report Contract DA-030-069-ORD-208 to Watertown Arsenal Labora-tory, 1954.Google Scholar
  8. 8.
    H. Böhm and K. Löhberg:Z. Metallk., 1958, vol. 49, p. 173.Google Scholar
  9. 9.
    Ge Dhzhi-Min and E. N. Pylaeva:Titanium and Its Alloys, I.I. Kornilov, ed., pp. 11-18, NASA (Transi, from Russian), Publ. No. 10,1966.Google Scholar
  10. 10.
    M. J. Blackburn and J. C. Williams:Trans. TMS-AIME, 1967, vol. 239, p. 287.Google Scholar
  11. 11.
    H. H. Weygand and H. G. Dorst:Z. Metallk., 1965, vol. 56, p. 114.Google Scholar
  12. 12.
    U. Zwicker:Z. Metallk., 1962, vol. 53, p. 675.Google Scholar
  13. 13.
    E. L. Harmon and A. R. Troiano:Trans. ASM, 1961, vol. 33, p. 43.Google Scholar
  14. 14.
    N. H. Ageyer and P. K. Novik:Izv. Akad. Nauk SSSR Metall, 1965, vol. 5, p. 134.Google Scholar
  15. 15.
    J. C. Williams, B. S. Hickman, and D. H. Leslie:Met. Trans., 1971, vol. 2, p. 477.CrossRefGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1972

Authors and Affiliations

  • T. Hamajima
    • 1
  • G. Luetjering
    • 2
  • S. Weissmann
    • 1
  1. 1.Department of Mechanics and Materials ScienceRutgers UniversityNew Brunswick
  2. 2.DFVLR, PORZ-WAHNGermany

Personalised recommendations