Advertisement

Metallurgical and Materials Transactions B

, Volume 3, Issue 11, pp 2743–2756 | Cite as

The initial stages of the cellular reaction

  • H. I. Aaronson
  • H. B. Aaron
Symposium on the Cellular and Pearlite Reactions

Abstract

Both the nucleation process per se and the organization of nearby nuclei or precipitates formed at a given disordered grain boundary into a viable cell structure are considered. When the critical nucleus is modeled in simple fashion, based upon a rectangular parallelepiped, the rate of nucleation by the “conventional” mechanism, in which the grain boundary is essentially immobile during the nucleation process, far exceeds that by the Tu-Turnbull “pucker” mechanism, in which the grain boundary is deflected so that its plane is parallel to the habit plane of the nucleus. A more rigorous model of the critical nucleus, based upon the somewhat specialized assumption that an energy cusp facet forms at only one boundary orientation but developed without a preconceived view of the nucleus morphology, leads to this result only when the facet energy is greater than one-half the energy of a disordered grain boundary. In the reverse energetic situation, the nucleus morphology is effectively that supposed by the pucker mechanism. The initial stage of cellular growth is examined in the framework of the question: why do allotriomorphs form at disordered grain boundaries under some conditions of alloy composition and temperature and cells develop under other conditions? The conditions for the two reaction paths are established on the basis of two key ideas: the direction in which the torque term associated with a facet deflects a grain boundary meeting the edge of the facet (deduced from the considerations of Hoffman and Cahn), and the existence of a driving force for the breakaway of a grain boundary from such a junction resulting from the requirement of continuity of path to another junction located nearby.

Keywords

Metallurgical Transaction Tilt Angle Habit Plane Boundary Energy Boundary Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    K. N. Tu and D. Turnbull:Acta Met., 1967, vol. 15, p. 369.CrossRefGoogle Scholar
  2. 2.
    K. N. Tu and D. Turnbull:Acta Met., 1967, vol. 15, p. 1317.CrossRefGoogle Scholar
  3. 3.
    R. Fournelle and J. B. Clark:Met. Trans., 1972, vol. 3, p. 2757.CrossRefGoogle Scholar
  4. 4.
    K. C. Russell: inPhase Transformations, p. 219, American Society for Metals, New York, 1970.Google Scholar
  5. 5.
    D. Turnbull and H. Treaftis:Acta Met., 1955, vol. 3, p. 43.CrossRefGoogle Scholar
  6. 6.
    R. S.Burington:Handbook of Mathematical Tables and Formulas, p. 7, Hand-book Publishers, Inc., Sandusky, Ohio, 1950.Google Scholar
  7. 7.
    K.C.Russell:Acta Met., 1968,vol. 16, p. 761.CrossRefGoogle Scholar
  8. 8.
    K. C.Russell:Acta Met., 1969, vol. 17, p. 1123.CrossRefGoogle Scholar
  9. 9.
    K. C. Russell: M.I.T., Cambridge, Mass., private communication, 1970.Google Scholar
  10. 10.
    J. Feder, K. C. Russell, J. Lothe and G. M. Pound:Advan. Phys., 1966, vol. 15, p.lll.CrossRefGoogle Scholar
  11. 11.
    P. G.Shewmon:Diffusion in Solids, p. 65 and 171, McGraw-Hill, New York, 1963.Google Scholar
  12. 12.
    H. I. Aaronson, C. Laird, and K. R. Kinsman: inPhase Transformations, p. 313, American Society for Metals, Metals Park, Ohio, 1970.Google Scholar
  13. 13.
    D. W. Hoffman and J. W. Cahn:Surface Science, in press.Google Scholar
  14. 14.
    H. I.Aaronson: inDecomposition of Austenite by Diffusional Processes, p. 387, Interscience Publishers, New York, 1962.Google Scholar
  15. 15.
    H. I.Aaronson: inThe Mechanism of Phase Transformations in Metals, p. 47, The Institute of Metals, London, 1955.Google Scholar
  16. 16.
    C. S.Smith:Trans. ASM, 1964, vol. 45, p. 533.Google Scholar
  17. 17.
    G. R.Speich:Trans. TMS-AIME, 1963, vol. 227, p. 754.Google Scholar
  18. 18.
    C. Laird and H.I. Aaronson:Acta Met., 1967,vol. 15,p.73.CrossRefGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1972

Authors and Affiliations

  • H. I. Aaronson
    • 1
  • H. B. Aaron
    • 2
  1. 1.Department of Metallurgical EngineeringMichigan Technological UniversityHoughton
  2. 2.Automotive Assembly DivisionFord Motor CompanyDearborn

Personalised recommendations