Advertisement

ZDM

, Volume 38, Issue 3, pp 302–310 | Cite as

A global survey of international perspectives on modelling in mathematics education

  • Gabriele Kaiser
  • Bharath Sriraman
Analyses

Abstract

In this article we survey the current debate on modelling and, describe different perspectives on this debate. We relate these perspectives with earlier perspectives and show similarities and differences between these different approaches.

ZDM-Classification

M10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbosa, J.C.. (2006). Mathematical Modelling in classroom: a critical and discursive perspective.Zentralblatt für Didaktik der Mathematik, 38(3), 293–301.CrossRefGoogle Scholar
  2. Blomhoj, M. (2004). Mathematical Modelling— A Theory for Practice. In B. Clarke et al. (Eds.),International Perspectives on Learning and Teaching Mathematics (pp. 145–159). Göteborg: National Center for Mathematics Education.Google Scholar
  3. Blomhøj, M. & Hoff Kjeldsen, T. (2006). Teaching mathematical modelling through project work—Experiences from an in-service course for upper secondary teachers.Zentralblatt für Didaktik der mathematik, 38 (2), 163–177.CrossRefGoogle Scholar
  4. Blum, W. (1996). Anwendungsbezüge im Mathematikunterricht—Trends und Perspektiven. In G. Kadunz, H. Kautschitsch, G. Ossimitz & E. Schneider (Ed.),Trends und Perspektiven (pp. 15–38). Wien: Hölder-Pichler-Tempsky.Google Scholar
  5. Blum, W. et al. (2002). ICMI Study 14: Applications and Modelling in Mathematics Education—discussion Document.Journal für Mathematik-Didaktik 23(3/4), 262–280.Google Scholar
  6. Blum, W. & Niss, M. (1991). Applied Mathematical Problem Solving, Modelling, Applications, and Links to Other Subjects.Educational Studies in Mathematics, 22, 37–68.CrossRefGoogle Scholar
  7. Blum, W. & Leiß, D. (2005). “Filling Up”—the Problem of Independence-preserving Teacher Interventions in Lessons with Demanding Modelling Tasks. (To appear in)Proceedings of the 4th European Congress of Mathematics Education, in St. Feliu de Guixols, Spain, Feb 16–22, 2005.Google Scholar
  8. Burghes, D.N., & Huntley, I. (1982). Teaching mathematical modelling—reflections and advice.International Journal of Mathematical Education in Science and Technology 13, 6, 735–754.CrossRefGoogle Scholar
  9. Borromeo Ferri, R., (2006). Theoretical and empirical differentiations of phases in the modelling process.Zentralblatt für Didaktik der Mathematik, 38 (2), 86–95.CrossRefGoogle Scholar
  10. Burkhardt, H., (2006). Modelling in mathematics classrooms: relfections on past developments and the future.Zentralblatt für Didaktik der Mathematik, 38 (2), 178–195.CrossRefGoogle Scholar
  11. D'Ambrosio, U. (1999) Literacy, Matheracy and technocracy: a trivium for today.Mathematical thinking and learning, 1 (2), 131–153.CrossRefGoogle Scholar
  12. De Lange, J., (1987).Mathematics—insight and meaning. Utrecht: Rijksuniversiteit Utrecht.Google Scholar
  13. Doerr, H.M. (2006). Teachers' ways of listening and responding to students' emerging mathematical models.Zentralblatt für Didaktik der Mathematik, 38(3), 255–268.CrossRefGoogle Scholar
  14. Dorier, J.-L. (2005). An introduction to mathematical modelling—an experiment with students in economics. (To appear in)Proceedings of the 4th European Congress of Mathematics Education, in St. Feliu de Guixols, Spain, Feb 16–22, 2005.Google Scholar
  15. Freudenthal, H. (1973).Mathematics as an Educational Task. Dordrecht: Reidel.Google Scholar
  16. Freudenthal, H. (1981). Mathematik, die uns angeht.Mathematiklehrer, 2, 3–5.Google Scholar
  17. Galbraith, P. & Stillman, G. (2006). A framework for identifying student blockages during transitions in the Modelling, process.Zentralblatt für Didaktik der Mathematik, 38, (2), 143–162.CrossRefGoogle Scholar
  18. Garcia Garcia, J. & Ruiz Higueras, L. (2005). Mathematical Praxeologies of Increasing Complexity: Variation systems modelling in Secondary Education. (To appear in)Proceedings of the 4th European Congress of Mathematics Education, in St. Feliu de Guixols, Spain, Feb 16–22, 2005.Google Scholar
  19. García, F.J., Gascón, J., Ruiz Higueras, L. & Bosch, M. (2006). Mathematical modelling as a tool for the connection of school mathematics.Zentralblatt für Didaktik der Mathematik, 38(3), 226–246.CrossRefGoogle Scholar
  20. Gellert, U., Jablonka, E. & Keitel, C. (2001). Mathematical Literacy and Common Sense in Mathematics Education. In: B. Atweh, H. Forgasz & B. Nebres (Eds.),Sociocultural Research on Mathematics Education (pp. 57–76), Mahwah: Lawrence Erlbaum Associates.Google Scholar
  21. Haines, C.P. & Crouch, R. (2005). Getting to grips with real world contexts: Developing research in mathematical modelling. (To appear in)Proceedings of the 4th European Congress of, Mathematics Education, in St. Feliu de guixols, Spain, Feb 16–22, 2005.Google Scholar
  22. Henning, H. & Keune, M. (2005). Levels of Modelling Competence. (To appear in)Proceedings of the 4th European Congress of Mathematics Education, in St. Feliu de Guixols, Spain, Feb 16–22, 2005.Google Scholar
  23. Iversen, S.M. & Larson, C.J. (2006). Simple thinking using complex math vs. complex thinking using simple math.Zentralblatt für Didaktik der Mathematik, 38(3), 281–292.CrossRefGoogle Scholar
  24. Kaiser-Messmer, G. (1986).Anwendungen im Mathematikunterricht. Vol. 1 Theoretische Konzeptionen. Bad Salzdetfurth: Franzbecker.Google Scholar
  25. Kaiser, G. (1995). Realitätsbezüge im Mathematikunterricht—Ein Überblick über die aktuelle, und historische Diskussion. In G. Graumann et al. (Eds.),Materialien für einen realitätsbezogenen Mathematikunterricht (pp. 66–84): Bad Salzdetfurth: Franzbecker.Google Scholar
  26. Kaiser, G. (2005). Introduction to the Working Group “Applications and modelling” (G14) (To appear in)Proceedings of the 4th European Congress of Mathematics Education in St. Feliu de Guixols, Spain, Feb 16–22, 2005.Google Scholar
  27. Kaiser, G. & Schwarz, B. (2006). Mathematical modelling as bridge between school and university.Zentralblatt für Didaktik der Mathematik, 38(2), 196–208.CrossRefGoogle Scholar
  28. Lesh, R. & Doerr, H. (Eds.) (2003). Beyond Constructivism:A models and modeling perspective on mathematics problem solving, learning, and teaching. Mahwah: Lawrence Erlbaum Associates, Mahwah.Google Scholar
  29. Lesh, R. & Sriraman, B. (2005a). John Dewey Revisited—Pragmatism and the models-modeling perspective on mathematical learning. In A. Beckmann et al. (Eds.),Proceedings of the 1st International Symposium on Mathematics and its Connections to the Arts and Sciences (pp. 32–51). May 18–21, 2005, Pedagogical University of Schwaebisch Gmuend. Hildesheim: Franzbecker.Google Scholar
  30. Lesh, R. & Sriraman, B. (2005b) Mathematics 0 education as a design science.Zentralblatt für Didaktik der Mathematik 37(6), 490–505.CrossRefGoogle Scholar
  31. Lester, F.K. (2005). On the theoretical, conceptual, and philosophical foundations for research in mathematics education.Zentralblatt für Didaktik der Mathematik, 37(6), 457–467.CrossRefGoogle Scholar
  32. Lingefjärd, T. (2005). Applied or pure MATHEMATICS. (To appear in)Proceedings of the 4th European Congress of Mathematics Education, in St. Feliu de Guixols, Spain, Feb 16–22, 2005.Google Scholar
  33. Lingefjärd, T. (2006). Faces of mathematical modelling.Zentralblatt für Didaktik der Mathematik, 38 (2), 96–112.CrossRefGoogle Scholar
  34. Maaß, K. (2004).Mathematisches Modellieren im Unterricht. Hildescheim Franzbecker.Google Scholar
  35. Maaß, K. (2006). What are modelling competencies?Zentralblatt für Didaktik der Mathematik, 38 (2), 113–142.CrossRefGoogle Scholar
  36. Michelsen, C. (2006). Functions: a modelling tool in mathematics and science.Zentralblatt für Didaktik der Mathematik, 38(3), 269–280.CrossRefGoogle Scholar
  37. Niss, M., (2001). University mathematics based on problem-oriented student projects: 25 years of experiences with the Roskilde model. In D. Holton, (ed.):The teaching and learning of mathematics at university level: an ICMI study, (pp. 405–422). Dordrecht: Kluwer Academic Publishers.Google Scholar
  38. Pierce, P. & Stacey, K. (2006). Enhancing the image of mathematics by association with simple, pleasures from real world contexts.Zentralblatt für Didaktik der Mathematik, 38(3), 214–225.CrossRefGoogle Scholar
  39. Pollak, H. (1969). How can we teach applications of mathematics?Educational Studies in Mathematics, 2, 393–404.CrossRefGoogle Scholar
  40. Revuz, A. (1971). The position of geometry in mathematical education.Educational Studies in Mathematics, 4, 48–52.CrossRefGoogle Scholar
  41. Skemp, R. (1987). The psychology of learning mathematics. Hillsdale: Lawrence Erlbaum Associates.Google Scholar
  42. Sriraman, B. (2005). Conceptualizing the notion of model-eliciting. (To appear in)Proceedings of the 4th European Congress of Mathematics Education, in St. Feliu de Guixols, Spain, Feb 16–22, 2005.Google Scholar
  43. Sriraman, B. & Lesh, R. (2006). Modeling conceptions revisited.Zentralblatt für Didaktik der Mathematik 38(3), 247–254.CrossRefGoogle Scholar
  44. Steiner, H.-G. (1968). Examples of exercises in mathematization on the secondary school level.Educational Studies in Mathematics, 1, 181–201.CrossRefGoogle Scholar
  45. Treffers, A. (1987).Three dimensions: a model of goal and theory descriptions in mathematics instruction—the Wiskobas Project Dordrecht: Kluwer.Google Scholar
  46. Vos, P. (2005). Assessment of mathematics in a laboratory-like environment: the importance of replications. (To appear in)Proceedings of the 4th European Congress of Mathematics Education, in St. Feliu de Guixols, Spain, Feb 16–22, 2005.Google Scholar

Copyright information

© ZDM 2006

Authors and Affiliations

  • Gabriele Kaiser
    • 1
  • Bharath Sriraman
    • 2
  1. 1.University of Hamburg Faculty of EducationHamburgGermany
  2. 2.The Montana Mathematics Enthusiast Dept. of MathematicsThe University of MontanaMissoulaUSA

Personalised recommendations