Metallurgical and Materials Transactions A

, Volume 25, Issue 10, pp 2235–2245 | Cite as

Low-Cycle fatigue of dispersion-strengthened copper

  • J. Robles
  • K. R. Anderson
  • J. R. Groza
  • J. C. Gibeling
Mechanical Behavior

Abstract

The cyclic deformation behavior of a dispersion-strengthened copper alloy, GlidCop Al-15, has been studied at plastic strain amplitudes in the range 0.1 pct ≤Δεp/2 ≤ 0.8 pct. Compared to pure polycrystalline copper, the dispersion-strengthened material exhibits a relatively stable cyclic response as a consequence of the dislocation substructures inherited from prior processing and stabilized by the A12O3 particles. These dislocation structures remain largely unaltered during the course of deformation; hence, they do not reveal any of the features classically associated with copper tested in fatigue. At low amplitudes, the fatigue lifetimes of the dispersion-strengthened copper and the base alloy are similar; however, the former is more susceptible to cracking at stress concentrations because of its substantially greater strength. This similarity in fatigue lifetimes is a consequence of the dispersal of both deformation and damage accumulation by the fine grain size and dislocation/particle interactions in the GlidCop alloy. The operation of these mechanisms is reflected in the fine surface slip markings and rough fracture surface features for this material.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. 1.
    C.A. English and D.J. Mazey:Nucl. Energy, 1990, vol. 29, pp. 67–80.Google Scholar
  2. 2.
    J.A. Koski, R.D. Boyd, S.M. Kempka, A.D. Romig, M.F. Smith, R.D. Watson, and J.B. Whitley:J. Nucl. Mater., 1984, vol. 121, pp. 309–15.CrossRefGoogle Scholar
  3. 3.
    S.N. Rosenwasser, R.D. Stevenson, G. Listvinski, D.L. Vrable, J.E. McGregor, and N. Nir:J. Nucl. Mater., 1984, vols. 122-123, pp. 1107–20.CrossRefGoogle Scholar
  4. 4.
    J.L. Yuen: Paper presented at the 119th Annual Meeting of TMS-AIME, Anaheim, CA, Feb. 18–22, 1990.Google Scholar
  5. 5.
    M.A. Morris and D.G. Morris:Mater. Sci. Eng., 1989, vol. Ill, pp. 115–27.Google Scholar
  6. 6.
    A.V. Nadkarni: inHigh Conductivity Copper and Aluminum Alloys, E. Lingand P.W. Taubenblat, eds., TMS-AIME, Warrendale, PA, 1984, pp. 77–101.Google Scholar
  7. 7.
    M.S. Nagorka, C.G. Levi, G.E. Lucas, and S.D. Ridder:Mater. Sci. Eng., 1991, vol. A104, pp. 277–89.Google Scholar
  8. 8.
    J.R. Groza and J.C. Gibeling:Mater. Sci. Eng., 1993, vol. A171, pp. 115–25.Google Scholar
  9. 9.
    J.W. Martin and G.C. Smith:J. Inst. Met., 1954–1955, vol. 83, pp. 153–65.Google Scholar
  10. 10.
    W.M. Stobbs, D.F. Watt, and L.M. Brown:Phil. Mag. A, 1971, vol. 23, pp. 1169–84.Google Scholar
  11. 11.
    G.R. Leverent and CP. Sullivan:Trans. TMS-AIME, 1968, vol. 242, pp. 2347–53.Google Scholar
  12. 12.
    G.R. Leverant and C.P. Sullivan:Trans. TMS-AIME, 1969, vol. 245, pp. 2035–39.Google Scholar
  13. 13.
    S.P. Bhat and C. Laird:Int. J. Fatigue Eng. Mater. Struct., 1979, vol. 1, pp. 79–92.CrossRefGoogle Scholar
  14. 14.
    D.M. Elzey and E. Arzt:Metall. Trans. A, 1991, vol. 22A, pp. 837–51.Google Scholar
  15. 15.
    J.D. Whittenberger: inNew Materials by Mechanical Alloying Techniques, E. Arzt and L. Schultz, eds., DGM Informationsgesellschaft, Oberursel, Germany, 1989, pp. 201–15.Google Scholar
  16. 16.
    T.J. Miller, S.J. Zinkle, and B.A. Chin:J. Nucl. Mater., 1991, vols. 179-181, pp. 263–66.CrossRefGoogle Scholar
  17. 17.
    J.J. Stephens, F.J. Bourcier, F.J. Vigil, and D.T. Schmale: Sandia Report SAND88-351, UC-25, Sandia National Laboratory, Albuquerque, NM, 1988.Google Scholar
  18. 18.
    J. Groza and S. Farrens:Microstruct. Sci., 1992, vol. 19, pp. 689–99.Google Scholar
  19. 19.
    J.M. Meininger and J.C. Gibeling:Metall. Trans. A, 1992, vol. 23A, pp. 3077–84.Google Scholar
  20. 20.
    H. Mughrabi, K. Herz, and X. Stark:Int. J. Fract., 1981, vol. 17, pp. 193–220.CrossRefGoogle Scholar
  21. 21.
    J. Polák and M. Kiesnil:Mater. Sci. Eng., 1984, vol. 63, pp. 189–96.CrossRefGoogle Scholar
  22. 22.
    J.C. Figueroa, S.P. Bhat, R. De La Veaux, S. Murzenski, and C. Laird:Acta Metall., 1981, vol. 29, pp. 1667–78.CrossRefGoogle Scholar
  23. 23.
    J. Polák, K. Obrtlik, and J. Helešic:Mater. Sci. Eng., 1991, vol. A132, pp. 67–76.Google Scholar
  24. 24.
    R. Wang and H. Mughrabi:Mater. Sci. Eng., 1984, vol. 63, pp. 147–63.CrossRefGoogle Scholar
  25. 25.
    C. Calabrese and C. Laird:Mater. Sci. Eng., 1974, vol. 13, pp. 141–57.CrossRefGoogle Scholar
  26. 26.
    C.E. Feltner and C. Laird:Acta Metall., 1967, vol. 15, pp. 1621–32.CrossRefGoogle Scholar
  27. 27.
    C. Laird, Z. Wang, B.-T. Ma, and H.-F. Chai:Mater. Sci. Eng., 1989, vol. A 1113, pp. 245–57.Google Scholar
  28. 28.
    F. Ernst, P. Pirouz, and A.H. Heuer:Phil. Mag. A, 1991, vol. 63, pp. 259–77.Google Scholar
  29. 29.
    L. Lianes and C. Laird:Mater. Sci. Eng., 1993, vol. A161, pp. 1–12.Google Scholar
  30. 30.
    A.T. Winter, O.B. Pederson, and K.V. Rasmussen:Acta Metall., 1981, vol. 29, pp. 735–48.CrossRefGoogle Scholar
  31. 31.
    H. Mughrabi and R. Wang: inBasic Mechanisms in Fatigue of Metals, P. Lukáš and J. Polák, eds., Elsevier, Amsterdam, 1988, pp. 1–13.Google Scholar
  32. 32.
    H. Mughrabi: inDislocations and Properties of Real Materials, M. Loretto, ed., Institute of Metals, London, 1985, pp. 244–62.Google Scholar
  33. 33.
    J.D. Embury: inStrengthening Methods in Crystals, A. Kelly and R.B. Nicholson, eds., Wiley, New York, NY, 1971, pp. 331–402.Google Scholar
  34. 34.
    A. Hynnä, V.-T. Kuokkala, T. Lepistö, T. Mäntylä, and P. Kettunen: inHigh Temperature Alloys for Gas Turbines and Other Applications, W. Betz, R. Brunetaud, D. Coutsouradis, H. Fischmeister, T.B. Gibbons, I. Kvernes, Y. Lindblom, J.B. Marriott, and D.B. Meadowcroft, eds., D. Reidel Publishing Company, Dordrecht, The Netherlands, 1986, pp. 1091–1102.Google Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1994

Authors and Affiliations

  • J. Robles
    • 1
  • K. R. Anderson
    • 2
  • J. R. Groza
    • 2
  • J. C. Gibeling
    • 2
  1. 1.Clorox CompanyPleasanton94556
  2. 2.Division of Materials Science and Engineering, Department of Chemical Engineering and Materials ScienceUniversity of CaliforniaDavis

Personalised recommendations