Metallurgical and Materials Transactions A

, Volume 27, Issue 8, pp 2151–2159 | Cite as

Microstructure and phase identification in type 304 stainless steel-zirconium alloys

  • Daniel P. Abraham
  • Sean M. McDeavitt
  • Jangyul Park
Alloy Phases


Stainless steel-zirconium alloys have been developed at Argonne National Laboratory to contain radioactive metal isotopes isolated from spent nuclear fuel. This article discusses the various phases that are formed in as-cast alloys of type 304 stainless steel and zirconium that contain up to 92 wt pct Zr. Microstructural characterization was performed by scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS), and crystal structure information was obtained by X-ray diffraction. Type 304SS-Zr alloys with 5 and 10 wt pct Zr have a three-phase microstructure—austenite, ferrite, and the Laves intermetallic, Zr(Fe,Cr,Ni)2+x. whereas alloys with 15, 20, and 30 wt pct Zr contain only two phases—ferrite and Zr(Fe,Cr,Ni)2+x. Alloys with 45 to 67 wt pct Zr contain a mixture of Zr(Fe,Cr,Ni)2+x and Zr2(Ni,Fe), whereas alloys with 83 and 92 wt pct Zr contain three phases—α-Zr, Zr2(Ni,Fe), and Zr(Fe,Cr,Ni)2+x. Fe3Zr-type and Zr3Fe-type phases were not observed in the type 304SS-Zr alloys. The changes in alloy microstructure with zirconium content have been correlated to the Fe-Zr binary phase diagram.


Zirconium Ferrite Austenite Material Transaction Lave Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S.M. McDeavitt, J.Y. Park, and J.P. Ackerman:Actinide Processing: Methods and Materials, B. Mishra and W.A. Averill, eds., TMS, Warrendale, PA, 1994, pp. 305–19.Google Scholar
  2. 2.
    J.P. Ackerman:Ind. Eng. Chem. Res., 1991, vol. 30, p. 29.CrossRefGoogle Scholar
  3. 3.
    J.E. Battles, J.J. Laidler, C.C. McPheeters, and W.E. Miller:Actinide Processing: Methods and Materials, B. Mishra and W.A. Averill, eds., TMS, Warrendale, PA, 1994, pp. 135–51.Google Scholar
  4. 4.
    J.P. Ackerman, T.R. Johnson, and J.J. Laidler:Actinide Processing: Methods and Materials, B. Mishra and W.A. Averill, eds., TMS, Warrendale, PA, 1994, pp. 261–66.Google Scholar
  5. 5.
    L.C. Walters, B.R. Seidel, and J.H. Kittel:Nucl. Technol, 1984, vol. 65, pp. 179–231.Google Scholar
  6. 6.
    V. Raghavan:Phase Diagrams of Ternary Iron Alloys, Part 6B, Indian Institute of Metals, Calcutta, 1992, pp. 1094–98.Google Scholar
  7. 7.
    D. Arias and J.P. Abriata:Binary Alloy Phase Diagrams, T.P. Massalski, ed., ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 2, pp. 1798–1800.Google Scholar
  8. 8.
    O. Kubaschewski:Iron-Binary Phase Diagrams, Springer Publications, New York, NY, 1982, p. 175.Google Scholar
  9. 9.
    A.D. Pelton, L. Leibowitz, and R.A. Blomquist:J. Nucl. Mater., 1993, vol. 201, pp. 218–24.CrossRefGoogle Scholar
  10. 10.
    Z.M. Alekseeva and N.V. Korotkova:Russ. Met., 1989, No. 4, p. 197.Google Scholar
  11. 11.
    V.N. Svechnikov, V.M. Pan, and A.Ts. Spektor:Russ. J. Inorg. Chem., 1963, vol. 8, pp. 1106–09.Google Scholar
  12. 12.
    F. Aubertin, U. Gonser, S.J. Campbell, and H.-G. Wagner:Z Metallkd., 1985, vol. 76, pp. 237–44.Google Scholar
  13. 13.
    J.I. Goldstein, D.E. Newbury, P. Echlin, D.C. Joy, A.D. Romig, Jr., C.E. Lyman, C. Fiori, and E. Lifshin:Scanning Electron Microscopy and X-ray Microanalysis, Plenum Press, New York, NY, pp. 493–96.Google Scholar
  14. 14.
    G.V. Raynor and V.G. Rivlin:Bull. Alloy Phase Diagrams, 1981, vol. 2, pp. 89–99.Google Scholar
  15. 15.
    Y. Liu, J.D. Livingston, and S.M. Allen:Metall. Trans. A, 1992, vol. 23A, pp. 3303–08.Google Scholar
  16. 16.
    Y. Liu, S.M. Allen, and J.D. Livingson:Scripta Metall. Mater., 1995, vol. 32, pp. 1129–32.CrossRefGoogle Scholar
  17. 17.
    H. Fredriksson:Metall. Trans., 1972, vol. 3, pp. 2989–97.Google Scholar
  18. 18.
    H. Fredriksson:Solidification and Casting of Metals, The Metals Society, London, 1977, pp. 131–36.Google Scholar
  19. 19.
    H. Fredriksson:Casting—Metals Handbook, 9th ed., ASM INTERNATIONAL, Materials Park, OH, 1988, pp. 125–29.Google Scholar
  20. 20.
    P. Nash and C.S. Jayanth:Bull. Alloy Phase Diagrams, 1984, vol. 5, pp. 144–48.Google Scholar
  21. 21.
    E.E. Havinga, H. Damsma, and P. Hokkeling:J. Less-Common Met., 1972, vol. 27, pp. 169–86.CrossRefGoogle Scholar
  22. 22.
    P. Chemelle, D.B. Knorr, J.B. van der Sande, and R.M. Pelloux:J. Nucl. Mater., 1983, vol. 113, pp. 58–64.CrossRefGoogle Scholar
  23. 23.
    M. Griffiths, R.W. Gilbert, and G.J.C. Carpenter:J. Nucl. Mater., 1987, vol. 150, pp. 53–66.CrossRefGoogle Scholar
  24. 24.
    D. Pecheur, F. Lefebvre, A.T. Motta, C. Lemaignan, and D. Charquet:J. Nucl. Mater., 1993, vol. 205, pp. 445–51.CrossRefGoogle Scholar
  25. 25.
    X.Y. Meng, and D.O. Northwood:J. Less-Common Met., 1986, vol. 125, pp. 33–44.CrossRefGoogle Scholar
  26. 26.
    R.P. Elliott and W. Rostoker:Trans. ASM, 1958, vol. 50, pp. 617–32 (written discussion by A.E. Dwight occurs toward the end of this article).Google Scholar
  27. 27.
    O. Canet, M. Latroche, F. Bourée-Vigneron, and A. Percheron-Guégan:J. Alloys Compounds, 1994, vol. 210, pp. 129–34.CrossRefGoogle Scholar
  28. 28.
    W. Bruckner, K. Kleinstuck, and G.E.R. Schulze:Phys. Status Solidi, 1967, vol. 23, pp. 475–80.Google Scholar
  29. 29.
    D.P. Abraham: Argonne National Laboratory, Argonne, IL, research in progress, 1995.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1996

Authors and Affiliations

  • Daniel P. Abraham
    • 1
  • Sean M. McDeavitt
    • 1
  • Jangyul Park
    • 2
  1. 1.Chemical Technology DivisionArgonne National LaboratoryArgonne
  2. 2.Energy Technology DivisionArgonne National LaboratoryArgonne

Personalised recommendations