Advertisement

Metallurgical and Materials Transactions A

, Volume 25, Issue 3, pp 599–605 | Cite as

Experimental study of the influence of interfacial energies and reactivity on wetting in metal/oxide systems

  • L. Espié
  • B. Drevet
  • N. Eustathopoulos
Physical Chemistry

Abstract

The wetting of a CuPd alloy containing 15 at. pct Ti at 1473 K on three oxide substrates (alumina, mullite, and silica) of different stability with respect to the liquid alloy was studied. Contact angle measurements were performed using the sessile drop method. The morphological and chemical characteristics of the metal/ceramic interface were determined by scanning electron microscopy, X-ray diffraction, and electronic microprobe. Results on reactivity were explained on the basis of a detailed description of the thermodynamics of interfacial reactions. The relative magnitude of the two contributions involved in the theory of reactive wetting—that is, the change in the nature of interfaces and the free energy released by the reaction—was discussed. It has been concluded that for the systems studied in the present work and more generally for systems with a limited or moderate reactivity, the term accounting for interfacial energy change appears to be the predominant contribution to reactive wetting.

Keywords

Contact Angle Material Transaction Interfacial Reaction Liquid Alloy Triple Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Laurent: Ph.D. Thesis, Institut National Polytechnique de Grenoble, France, 1988.Google Scholar
  2. 2.
    D. Chatain, L. Coudurier, A. Steinchen, and N. Eustathopoulos: Interfaces in New Materials, Louvain La Neuve, Belgique, Nov. 15–20, 1990, P. Grange and B. Belmon, eds., Elsevier Applied Science, Amsterdam, 1991, pp. 210–18.Google Scholar
  3. 3.
    L.A. Aksay, C.E. Hoge, and J.A. Pask:J. Phys. Chem., 1974, vol. 78 (12), pp. 1178–83.CrossRefGoogle Scholar
  4. 4.
    Ju. V. Naidich:Prog. Surf. Membr. Sci., 1981, vol. 14, pp. 353–484.Google Scholar
  5. 5.
    P.R. Chidambaram, G.R. Edwards, and D.L. Oison:Metall. Trans. B, 1992, vol. 23B, pp. 215–22.CrossRefGoogle Scholar
  6. 6.
    N. Eustathopoulos and A. Mortensen: inFundamentals of Metal Matrix Composites, S. Suresh, A. Mortensen, and A. Needleman, eds., Butterworth-Heinemann, Stoneham, MA, 1993.Google Scholar
  7. 7.
    M. Nicholas:Trans. Br. Ceram. Soc, 1986, vol. 85, pp. 144–46.Google Scholar
  8. 8.
    C. Wan: Ph.D. Thesis, Institut National Polytechnique de Grenoble, France, 1992.Google Scholar
  9. 9.
    C. Wan, P. Kritsalis, and N. Eustathopoulos:Mater. Sci. Forum, 1993, vol. 126-128, pp. 679–82.CrossRefGoogle Scholar
  10. 10.
    P. Kritsalis, L. Coudurier, and N. Eustathopoulos:J. Mater. Sci., 1991, vol. 26, pp. 3400–08.CrossRefGoogle Scholar
  11. 11.
    L. Jianguo, L. Coudurier, I. Ansara, and N. Eustathopoulos:Ann. Chim., 1988, vol. 13, pp. 145–53 (in French).Google Scholar
  12. 12.
    V. Merlin: Ph.D. Thesis, Institut National Polytechnique de Grenoble, France, 1992.Google Scholar
  13. 13.
    Ju. V. Naidich, V.S. Zhuravlev, V.G. Chuprina, and L.V. Strashinskaya:Sov. Powder Metall. Met. Ceram., 1973, vol. 12 (11), pp. 895–99.Google Scholar
  14. 14.
    P.D. Ownby and J. Liu:J. Adhes. Sci. Technol., 1988, vol. 2 (4), pp. 255–69.CrossRefGoogle Scholar
  15. 15.
    P. Kritsalis, J.G. Li, L. Coudurier, and N. Eustathopoulos:J. Mater. Sci. Lett., 1990, vol. 9, pp. 1332–35.CrossRefGoogle Scholar
  16. 16.
    L. Espié: DEA Report, Institut National Polytechnique de Grenoble, France, 1992.Google Scholar
  17. 17.
    P. Kritsalis, V. Merlin, L. Coudurier, and N. Eustathopoulos:Acta Metall. Mater., 1992, vol. 40 (6), pp. 1167–75.CrossRefGoogle Scholar
  18. 18.
    V. Merlin, P. Kritsalis, L. Coudurier, and N. Eustathopoulos:Mater. Res. Soc. Symp. Proc, 1992, vol. 238, pp. 511–16.Google Scholar
  19. 19.
    Surface Properties of Melts and Solids and their Use in Materials Science and Technology, Yu. V. Naidich, ed., Naukova Dumka, Kiev, 1991, p. 29 (in Russian).Google Scholar
  20. 20.
    P. Kritsalis, L. Coudurier, C. Parayre, and N. Eustathopoulos:J. Less-Common Met., 1991, vol. 175, pp. 13–27.CrossRefGoogle Scholar
  21. 21.
    R. Standing and M. Nicholas:J. Mater. Sci., 1978, vol. 13, pp. 1509–14.CrossRefGoogle Scholar
  22. 22.
    A.R. Miedema, F.R. de Boer, R. Boom, and J.W.F. Dorleijn:Calphad, 1977, vol. 1, pp. 353–59.CrossRefGoogle Scholar
  23. 23.
    JANAF Thermochemical Tables, 3rd ed., 1985, vol. 14.Google Scholar
  24. 24.
    P.R. Subramanian and D.E. Laughlin:J. Phase Equilib., 1991, vol. 12 (2), pp. 231–43.CrossRefGoogle Scholar
  25. 25.
    D. Ludecke:Lehrstuhl für Theoretische Hüttenkunde und Metallurgie der Kernbrennstoffe, Report, RWTH Aachen, Germany, 1986.Google Scholar
  26. 26.
    N. Saunders:Calphad, 1985, vol. 9 (4), pp. 297–309.CrossRefGoogle Scholar
  27. 27.
    J.L. Murray:Bull. Alloy Phase Diagrams, 1982, vol. 3 (3), pp. 321–29.Google Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1994

Authors and Affiliations

  • L. Espié
    • 1
  • B. Drevet
    • 2
  • N. Eustathopoulos
    • 3
  1. 1.School of MinesParisFrance
  2. 2.Center of Nuclear StudiesGrenobleFrance
  3. 3.CNRS-INPGrenobleFrance

Personalised recommendations