The computer and the universe

  • John Archibald Wheeler


The reasons are briefly recalled why (1) time cannot be a primordial category in the description of nature, but secondary, approximate and derived, and (2) the laws of physics could not have been engraved for all time upon a tablet of granite, but had to come into being by a higgledy-piggledy mechanism. It is difficult to defend the view that existence is built at bottom upon particles, fields of force or space and time. Attention is called to the “elementary quantum phenomenon” as potential building element for all that is. The task of construction of physics from such elements is compared and contrasted with the problem of constructing a computer out of “yes, no” devices.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bennett, C. H. (1973). “Logical Reversibility of Computation,”IBM Journal of Research and Development,17, 525.MATHGoogle Scholar
  2. Bohr, N. (1949). “Discussions with Einstein on Epistemological Problems in Atomic Physics,” inAlbert Einstein: Philosopher-Scientist, P. A. Schilpp, ed., pp. 201–241, Library of Living Philosophers, Evanston, Illinois.Google Scholar
  3. Bohr, N. (1958).Atomic Physics and Human Knowledge, p. 73; (“Closed by irreversible amplification”); p. 88 (“irreversible amplification“). Wiley, New York.Google Scholar
  4. Bohr, N. (1936).Essays 1958–1962 on Atomic Physics and Human Knowledge, pp. 3,5,6. Wiley, New York.Google Scholar
  5. Bronowski, J. (1973).The Ascent of Man, p. 22. Little, Brown and Co., Boston.Google Scholar
  6. Einstein, A. (1933).On the Method of Theoretical Physics. Oxford University Press, New York; reprinted inPhilososphy of Science,1, 162 (1934).MATHGoogle Scholar
  7. Fisher, R. A., (1922).Proceedings of the Royal Society, Edinburgh,42, 321 (1922).Google Scholar
  8. Føllesdal, D. (1975). “Meaning and Experience,” inMind and Language, S. Guttenplan, ed., pp. 25–44. Clarendon Press, Oxford.Google Scholar
  9. Forsee, A. (1963). InAlbert Einstein, Theoretical Physicist, p. 81. New York.Google Scholar
  10. Gombrich, E. H. (1961).Art and Illusion: A Study in the Psychology of Pictorial Representation, pp. 273, 329, and 394, especially. Princeton University Press, Princeton, New Jersey.Google Scholar
  11. Herneck, F. (1979). “Die Beziehunggen zwischen Einstein und Mach, dokumentarisch dargestellt,” (correspondence in the original German)Einstein und sein Weltbild, pp. 109–115. Der Morgen, Berlin. (1979).Google Scholar
  12. Hojman, K., Kuchař, and Teitelboim, C. “New Approach to General Relativity,”Nature (London) Physical Science,245, 97, 98 (1973).CrossRefADSGoogle Scholar
  13. Kant, I. (1781)Kritik der reinen Vernunft, second enlarged edition (1787).Google Scholar
  14. Keyes, R. W., and Landauer, R. (1970). “Minimal Energy Dissipation in Logic,”IBM Journal of Research and Development,14, 152–157 (1970).CrossRefGoogle Scholar
  15. Leibniz, G. W. (1908). “Refutation of Spinoza,” inThe Philosophical Works of Leibniz, transl. G. M. Duncan, 2nd rev. ed., pp. 264–273. Yale University Press, New Haven, Connecticut. Written about 1708 asAnimadversiones ad Joh. George Wachteri librum de recondita Hebraeorum philosophia.Google Scholar
  16. Leibniz, G. W. (1962). InLeibniz: Basic Writings, transl. G. R. Montgomery. Open Court Publishing, La Salle, Illinois. Written in 1714 as “La Monadologie,” inLeibnitii Opera Philosophica quae extant Latina, Gallica, Germanica Omnia, J. Erdmann, ed., pp. 705–712. Berlin (1840).Google Scholar
  17. Mach, E. (1886).Beiträge zur Analyse d. Empfindungen. Jena; (1906),Die Analyse d. Empfindungen, 5th rev. ed.Google Scholar
  18. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973).Gravitation, Chap. 15. W. H. Freeman, San Francisco.Google Scholar
  19. Pipkin, F. M. (1978). “Atomic Physics Tests of the Basic Concepts in Quantum Mechanics,” inAdvances in Atomic and Molecular Physics, pp. 281–340. Academic Press, New York.Google Scholar
  20. Price, D. J. de S. (1974). “Gears from the Greeks: The Antikythera Mechanism—A Calendar Computer from ca 80 B.C.,”Transactions of the American Philosophical Society, New Series,64, part 7.Google Scholar
  21. Sýkora, S. (1974). “Quantum Theory and the Bayesian Inference Problems,”Journal of Statistical Physics,11, 17.CrossRefMathSciNetADSGoogle Scholar
  22. von Neumann, J. (1932).Mathematische Grundlagen der Quantenmechanik. Springer, Berlin; (1955).Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, New Jersey.MATHGoogle Scholar
  23. von Neumann, J. (1958).The Computer and the Brain. Yale University Press, New Haven, Connecticut.MATHGoogle Scholar
  24. Wheeler, J. A. (1978). “The ‘Past’ and the ‘Delayed-Choice’ Double-Slit Experiment,” inMathematical Foundations of Quantum Theory, A. R. Marlow, ed., pp. 9–48. Academic Press, New York.Google Scholar
  25. Wheeler, J. A. (1980). “Beyond the Black Hole,” inSome Strangeness in the Proportion: A Centennial Symposium to Celebrate the Achievements of Albert Einstein, H. Woolf, ed., pp. 341–375. Addision-Wesley, Reading, Massachusetts; (original use of this wording by the author).Google Scholar
  26. Wootters, W. K. (1980) “The Acquisition of Information from Quantum Measurements,” Ph.D. dissertation, University of Texas at Austin.Google Scholar
  27. Wootters, W. K. (1981). “Statistical Distribution and Hilbert Space,”Physical Review D,23, 357.CrossRefADSMathSciNetGoogle Scholar
  28. Yang, C. N., and Mills, R. L. (1954). “Conservation of Isotopic Spin and Isotopic Gauge Invariance,”Physical Review,96, 191–195.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • John Archibald Wheeler
    • 1
  1. 1.Center for Theoretical PhysicsThe University of Texas at AustinAustin

Personalised recommendations