Symbolic dynamics of one-dimensional maps: Entropies, finite precision, and noise

  • J. P. Crutchfield
  • N. H. Packard


In the study of nonlinear physical systems, one encounters apparently random or chaotic behavior, although the systems may be completely deterministic. Applying techniques from symbolic dynamics to maps of the interval, we compute two measures of chaotic behavior commonly employed in dynamical systems theory: the topological and metric entropies. For the quadratic logistic equation, we find that the metric entropy converges very slowly in comparison to maps which are strictly hyperbolic. The effects of finite precision arithmetric and external noise on chaotic behavior are characterized with the symbolic dynamics entropies. Finally, we discuss the relationship of these measures of chaos to algorithmic complexity, and use algorithmic information theory as a framework to discuss the construction of models for chaotic dynamics.


Entropy Lyapunov Exponent Logistic Equation Strange Attractor Topological Entropy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adler, R. L., Konheim, A. G., and McAndrew, M. H. (1965). “Topological Entropy,”Transactions of the American Mathematical Society,114, 309.MATHCrossRefMathSciNetGoogle Scholar
  2. Alekseyev, V. M., and Yakobson, M. V. (1981). “Symbolic Dynamics and Hyperbolic Dynamic Systems,”Physics Reports, to be published.Google Scholar
  3. Benettin, G., Casartelli, M., Galgani, L., Giorgilli, A., and Strelcyn, J.-M. (1978). “On the Reliability of Numerical Studies of Stochasticity,”Nuovo Cimento,44B, 183;50B, 211.ADSMathSciNetGoogle Scholar
  4. Benettin, G., Galgani, L., Giorgilli, A., and Strelcyn, J.-M. (1980). “Lyapunov Characteristic Exponents for Smooth Dynamical Systems and for Hamiltonian Systems; A Method for Computing All of Them, Parts I and II,”Meccanica, 21.Google Scholar
  5. Billingsley, P. (1965).Ergodic Theory and Information. John Wiley and Sons, New York.MATHGoogle Scholar
  6. Bowen, R. (1975). “Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms,”Lecture Notes in Mathematics,470, Springer Verlag.Google Scholar
  7. Bowen, R., and Ruelle, D. (1975). “Ergodic Theory of Axiom-A,”Inventiones Mathematicas,29, 181.MATHCrossRefADSMathSciNetGoogle Scholar
  8. Brudno, A. A. (1978).Uspekhi Matematicheskikh Nauk,33, 207.MATHMathSciNetGoogle Scholar
  9. Chaitin, G. J. (1966). “On the Length of Programs for Computing Binary Sequences,”J. Assoc. Computing Machinary.13, 547; See also “Randomness and Mathematical Proof,”Sci. Amer. May 1975, 47.MATHMathSciNetGoogle Scholar
  10. Chillingworth, D. R. J. (1976).Differential Topology With a View to Applications. Pitman, San Fransisco, California.MATHGoogle Scholar
  11. Collet, P., and Eckmann, J.-P. (1980).Iterated Maps of the Unit Interval as Dynamical Systems. Birkhauser, Cambridge, Massachusetts.Google Scholar
  12. Crutchfield, J. P., Nauenberg, M., and Rudnick, J. (1981). “Scaling for External Noise at the Onset of Chaos,”Physical Review Letters,46, 933.CrossRefADSMathSciNetGoogle Scholar
  13. Crutchfield, J. P., and Huberman, B. A. (1980). “Fluctuations and the Onset of Chaos,”Phys. Lett.,77A, 407.ADSMathSciNetGoogle Scholar
  14. Crutchfield, J. P., Farmer, J. D., and Huberman, B. A. (1981). “Fluctuations and Simple Chaotic Dynamics,”Physics Reports, to appear.Google Scholar
  15. Curry, J. H. (1981). “On Computing the Entropy of the Hénon Attractor,”Inst. des Hautes Études Sci. preprint.Google Scholar
  16. Dinaburg, E. I. (1970). “The Relation Between Topological Entropy and Metric Entropy,” Sov. Math.11, 13.MATHGoogle Scholar
  17. Erber, T., Everett, P., and Johnson, P. W. (1980). “The Simulation of Random Processes on Digital Computers with Chebyshev Mixing Transformations,” preprint.Google Scholar
  18. Farmer, J. D. (1981). “Order Within Chaos,” UCSC dissertation.Google Scholar
  19. Froehling, H., Crutchfield, J. P., Farmer, J. D., Packard, N. H., and Shaw, R. S. (1981). “On Determining the Dimension of Chaotic Flows,”Physica 3D, 605.ADSMathSciNetGoogle Scholar
  20. Guckenheimer, J., Moser, J., and Newhouse, S. E., (1980).Dynamical Systems. Birkhauser, Cambridge, Massachusetts.MATHGoogle Scholar
  21. Haken, H., and Mayer-Kress, G. (1981). “The Effect of Noise on the Logistic Equation,”J. Stat. Phys. to appear.Google Scholar
  22. Jonker, L., and Rand, D. (1980). “Bifurcations in One Dimension,”Inventiones Mathematicas,62, 347.MATHCrossRefADSMathSciNetGoogle Scholar
  23. Kamae, T. (1973). “On Kolmogorov’s Complexity and Information,”Osaka Journal of Mathematics,10, 305.MATHMathSciNetGoogle Scholar
  24. Kaplan, J., and Yorke, J. (1981). Private communication.Google Scholar
  25. Kifer, Ju. I. (1974).USSR Izvestija,8, 1083.MATHCrossRefGoogle Scholar
  26. Kolmogorov, A. N. (1958).Doklady Akademii Nauk,119, 754.MathSciNetGoogle Scholar
  27. Kolmogorov, A. N. (1965). “Three Approaches to the Quantitative Definition of Information,”Problems of Information Transmission (USSR),1, 1.MathSciNetGoogle Scholar
  28. Lasota, L., and Yorke, J. (1976). “On the Existence of Invariant Measures for Transformations with Strictly Turbulent Trajectories,”Bull. Acad. Pol. Sci.,25, 233.MathSciNetGoogle Scholar
  29. Ledrappier, F. (1981). “Some Properties of Absolutely Continuous Invariant Measures on an Interval,”Ergod. Theo. Dyn. Sys.,1, 77.MATHMathSciNetGoogle Scholar
  30. Lorenz, E. N. (1963). “Deterministic Non-Periodic Flow,”Journal of Atmospheric Science,20, 130.CrossRefADSGoogle Scholar
  31. Mandelbrot, B. (1977).Fractals: Form, Chance, and Dimension. W. H. Freeman, San Francisco, California.MATHGoogle Scholar
  32. Martin-Löf, P. (1966). “The Definition of Random Sequences,”Information Control,9, 602.CrossRefGoogle Scholar
  33. Milnor, J., and Thurston, W. (1977). “On Iterated Maps of the Interval, I and II,” Princeton University preprint.Google Scholar
  34. Minsky, M. L. (1962). “Problems of Formulation for Artificial Intelligence,” inMathematical Problems in the Biological Sciences, Proceedings of Symposia in Applied Mathematics XIV, R. E. Bellman, ed. American Mathematical Society, Providence, Rhode Island.Google Scholar
  35. Oono, Y., and Osikawa, M. (1980). “Chaos in Nonlinear Difference Equations I,”Progress in Theoretical Physics,64, 54.MATHCrossRefADSMathSciNetGoogle Scholar
  36. Packard, N. H., Crutchfield, J. P., Farmer, J. D., and Shaw, R. S. (1980). “Geometry from a Time Series,”Phys. Rev. Lett.,45, 712.CrossRefADSGoogle Scholar
  37. Parry, W. (1964). “Intrinsic Markov Chains,”Transactions of the American Mathematical Society,122, 55.CrossRefMathSciNetGoogle Scholar
  38. Piesin, Ya. B. (1977). “Characteristic Lyapunov Exponents and Smooth Ergodic Theory,”Uspeki Matematicheskikh Nauk,32, 55.Google Scholar
  39. Renyi, A. (1959). “On the Dimension and Entropy of Probability Distributions,”Acta Math. Hung.,10, 193.CrossRefMathSciNetGoogle Scholar
  40. Ruelle, D. (1977). “Applications Conservant une Mesure Absolument Continue par rapport a dx sur [0, 1],”Communications in Mathematical Physics,55, 47.MATHCrossRefADSMathSciNetGoogle Scholar
  41. Ruelle, D., and Takens, F. (1971). “On the Nature of Turbulence,”Communications in Mathematical Physics,20, 167.MATHCrossRefADSMathSciNetGoogle Scholar
  42. Ruelle, D. (1978). “An Inequality for the Entropy of Differentiable Maps,”Bull. Soc. Brasil Math.,9, 331.MathSciNetGoogle Scholar
  43. Schraiman, B., Wayne, C. E., and Martin, P. C. (1981). “Scaling Theory for Noisy Period-Doubling Transitions to Chaos,”Physical Review Letters,46, 935.CrossRefADSMathSciNetGoogle Scholar
  44. Shaw, R. (1980). “On the Predictability of Mechanical Systems,” UCSC dissertation.Google Scholar
  45. Shaw, R. (1981). “Strange Attractors, Chaotic Behavior, and Information Flow,”Zeitschrift fuer Naturforschung,36a, 80.ADSGoogle Scholar
  46. Shimada, I. (1979). “Gibbsian Distribution on the Lorenz Attractor,”Progress in Theoretical Physics,62, 61.MATHCrossRefADSMathSciNetGoogle Scholar
  47. Shimada, I., and Nagashima, T. (1979). “A Numerical Approach to Ergodic Problems of Dissipative Dynamical Systems,”Progress Theoretical Physics,61, 1605.MATHCrossRefADSMathSciNetGoogle Scholar
  48. Sinai, Ya. (1972). “Gibbsian Measures in Ergodic Theory,”Russian Mathematical Surveys,27, 21.CrossRefMATHMathSciNetGoogle Scholar
  49. Smale, S. (1967). “Differentiable Dynamical Systems,”Bulletin of the American Mathematical Society,13, 747.CrossRefMathSciNetGoogle Scholar
  50. Solomonoff, R. J. (1964). “A Formal Theory of Inductive Control,”Information Control,7, 224.CrossRefMATHMathSciNetGoogle Scholar
  51. Takens, F. (1980). “Detecting Strange Attractors in Turbulence,” preprint.Google Scholar
  52. Yorke, J. A., and Yorke, E. D. (1979). “Metastable Chaos: The Transition to Sustained Chaotic Behavior in the Lorenz Model,”Journal of Statistical Physics,21, 263.CrossRefADSMathSciNetGoogle Scholar
  53. Zvonkin, A. K., and Levin L. A. (1970). “The Complexity of Finite Objects and the Development of the Concepts of Information and Randomness by means of the Theory of Algorithms,”Russian Mathematical Survey,25, 83.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1982

Authors and Affiliations

  • J. P. Crutchfield
    • 1
  • N. H. Packard
    • 1
  1. 1.Physics Board of StudiesUniversity of CaliforniaSanta Cruz

Personalised recommendations