Metallurgical and Materials Transactions B

, Volume 25, Issue 4, pp 481–490 | Cite as

Processing of spent hydrorefining catalysts by selective chlorination

  • I. Gaballah
  • M. Djona


Spent hydrorefining catalysts may contain 4 to 6 Pct CoO and/or NiO, 8 to 16 Pct MoO3, and up to 10 Pct V2O5, generally supported by alumina. Raw samples are roasted to eliminate C, S, and hydrocarbons contained in the spent catalysts. The optimum roasting temperature and time are 500 °C and 7 hours. Chlorination of roasted samples with Cl2 + air, Cl2 + N2, and Cl2 + CO is investigated in order to recover the valuable metals selectively. Depending on the chlorination parameters, it is possible to recover more than 80 Pct of the Ni and Co, about 95 Pct of the Mo, and up to 80 Pct of V compounds. The Co and Ni chlorides are obtained by leaching the chlorination residues with acidified water. The Mo and V chlorides and/or oxychlorides are obtained by selective condensation from the vapor phase. The chlorination of the catalyst support, A12O3, can be limited to less than about 5 Pct. Besides the reaction temperature and time, the O2 partial pressure of the chlorinating gas mixture appears to be the key factor for the reaction’s selectivity.


Material Transaction MoO3 Percentage Weight Loss Spend Catalyst Valuable Metal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.F. Le Page:Catalyse de Contact, Conception, Preparation et Mise en Oeuvre des Catalyseurs Industriels, Institut Francais du Pétrole, Recherches et Témoignages, Éditions Technip, Paris, 1978, 519, 526-527.Google Scholar
  2. 2.
    I. Gaballah, M. Djona, and N. Kanari:Recovery of Co, Mo and Ni Contained in the Spent Catalysts, EC, Final Report, Contract No. MA1R-0014-C(A), Feb. 1990.Google Scholar
  3. 3.
    B.W. Jong and R.E. Siemens: inProposed Methods for Recovering Critical Metals from Spent Catalysts, Proc. Int. Symp. Recycle and Secondary Recovery of Metals, P.R. Taylor, H.Y. Sohn, and N. Jarrett, eds., AIME, Warrendale, PA, 1985, pp. 477–88.Google Scholar
  4. 4.
    J.Y. Welsh and P. Piquet:Procédé de Récupération de Métaux à Partir de Catalyseurs d'Hydrodésulfuration d'Hydrocarbures, European Patent No. 0017 285, 1980.Google Scholar
  5. 5.
    B.W. Jong, S.C. Rhoads, A.M. Stubbs, and T.R. Stoelting: Report No. RI9252, U.S. Bureau of Mines, U.S. Department of Interior, Aug. 1989.Google Scholar
  6. 6.
    M.W. Chase, Jr., C.A. Davies, J.R. Downey, Jr., D.J. Frurip, R.A. McDonald, and A.N. Syverud: JANAF Thermochemical Tables,J. Phys. Chem. Ref. Data, 1985, vol. 14.Google Scholar
  7. 7.
    I. Barin:Thermochemical Data of Pure Substances, VCH, Weinheim, Germany, 1989.Google Scholar
  8. 8.
    Software HSC Chemistry for Windows, Version 1.10, Outokumpu Research Oy, Pori, Finland.Google Scholar
  9. 9.
    CRC Handbook of Chemistry and Physics, 66th ed., R.C. Weast, M.J. Astle, and W.H. Beyer eds., 1985–1986.Google Scholar
  10. 10.
    F. Habashi:Extractive Metallurgy, Vol. 3, Pyrometallurgy, Gordon and Breach, New York, NY, 1986, pp. 221–222.Google Scholar
  11. 11.
    P. Pascal:Nouveau Traité de Chimie Minérale, Masson, Paris, 1959, vol. XIV, p. 619.Google Scholar
  12. 12.
    E.M. Levin and H.F. McMurdie:Phase-Diagrams for Ceramists, The American Ceramic Society Inc., Westerville, OH, 1975, 1975 Suppl., p. 179.Google Scholar
  13. 13.
    R.S. Roth, T. Negas, and L.P. Cook:Phase-Diagrams for Ceramists, The American Ceramic Society Inc., Westerville, OH, 1981, vol. IV, p. 47.Google Scholar
  14. 14.
    I. Gaballah and N. Kanari: inProc. 7th National Conference on Metallurgical Science and Technology, Oct. 3–5, 1990, Madrid, Spain, 1990, vol. I, pp. 377-86.Google Scholar
  15. 15.
    M. Binnewies: Z.Anorg. Allg. Chem., 1977, No. 437, pp. 25-32.Google Scholar
  16. 16.
    F.P. Emmenegger, P. Favre, and M. Kluczkowski:Inorg. Chem., 1982, vol. 21, pp. 2934–38.CrossRefGoogle Scholar
  17. 17.
    E.W. Dewing:Metall. Trans., 1970, vol. 1, pp. 2169–74.CrossRefGoogle Scholar
  18. 18.
    G.N. Papatheodorou: Z.Anorg. Allg. Chem., 1975, No. 411, pp. 153-62.Google Scholar
  19. 19.
    A. Dell'Anna and F.P. Emmenegger:Helv. Chim. Acta., 1975, vol. 58, pp. 1145–61.CrossRefGoogle Scholar
  20. 20.
    P.J. Thistlethwaite and S. Ciach:Inorg. Chem., 1975, vol. 14 (6), pp. 1430–32.CrossRefGoogle Scholar
  21. 21.
    M. Binnewies: Z.Anorg. Allg. Chem., 1977, No. 435, pp. 156-60.Google Scholar
  22. 22.
    W. Lenhard and H. Schäfer: Z.Anorg. Allg. Chem., 1981, No. 482, pp. 167-72.Google Scholar
  23. 23.
    H. Schäfer and U. Flörke: Z.Anorg. Allg. Chem., 1980, No. 469, pp. 172-78.Google Scholar
  24. 24.
    H. Schäfer and R. Becker-Kaiser: Z.Anorg. Allg. Chem., 1985, No. 525, pp. 157-62.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1994

Authors and Affiliations

  • I. Gaballah
    • 1
    • 2
  • M. Djona
    • 3
  1. 1.Laboratoire Environment et MineralurgieVandoeuvreFrance
  2. 2.Mineral Processing and Environmental Engineering teamCentre National de la Recherche ScientifiqueVandoeuvreFrance
  3. 3.Institut National Polytechnique de LorraineVandoeuvreFrance

Personalised recommendations