Metallurgical Transactions B

, Volume 23, Issue 4, pp 477–492

A numerical and experimental study of the solidification rate in a twin-belt caster

  • B. Farouk
  • D. Apelian
  • Y. G. Kim


A numerical and experimental study was carried out to investigate the solidification process in a twin-belt (Hazelett) caster. The numerical model considers a generalized energy equation that is valid for the solid, liquid, and mushy zones in the cast. Ak-ε turbulence model is used to calculate the turbulent viscosity in the melt pool. The process variables considered are the belt speed, strip thickness, nozzle width, and heat removal rates at the belt-cast interface. From the computed flow and temperature fields, the local cooling rates in the cast and trajectories of inclusions were computed. The cooling rate calculations were used to predict the dendrite arm spacing in the cast. The inclusion trajectories agree with earlier findings on the distribution of inclusion particles for near horizontally cast surfaces. This article also reports the results of an experimental study of the measurement of heat flux values at the belt-cast interface during the solidification of steel and aluminum on a water-cooled surface. High heat fluxes encountered during the solidification process warranted the use of a custom-made heat flux gage. The heat flux data for the belt surface were used as a boundary condition for the numerical model. Objectives of the measurements also included obtaining an estimate of the heat-transfer coefficient distribution at the water-cooled side of the caster belt.

List of Symbols


solidified shell thickness, mm


solidification retardation constant, mm


turbulence model constants


drag coefficient


specific heat, kJ/kg K


half thickness of the nozzle, m


half thickness of the cast slab, m


secondary dendrite arm spacing, mm


sensible heat, J/kg


sensible heat for water cooling temperature, J/kg


force, N


solid fraction


liquid fraction


gravitational acceleration, m/s2


enthalpy, J/kg


global heat-transfer coefficient, W/m2 K


interface heat-transfer coefficient between belt and cast metal, W/m2 K


latent heat content, J/kg


turbulent kinetic energy, m2/s2


axial belt caster length, m


latent heat of fusion, J/kg


mass, kg


normal direction


Peclet number


heat flux at the belt of cooling water side, MW/m2


turbulence Reynolds numbez(k2/ ε)


radius of inclusion particle, mm


generalized source term


local solidification time, s


temperature, K


temperature interval of mushy zone, K


belt speed, cm/s


mean velocity of melt at the nozzle exit, m/s


instantaneous velocity of a particle


velocity inx direction, m/s


velocity iny direction, m/s


coordinate parallel to the belts


coordinate normal to the belts


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.W. Cramb:Iron and Steelmaker, 1988, vol. 15, pp. 45–60.Google Scholar
  2. 2.
    T.E. Dancy:Iron and Steelmaker, 1987, vol. 14, pp. 37–39.Google Scholar
  3. 3.
    P.H. Dauby:Near Net Shape Casting, Iron and Steel Society, Warrendale, PA, 1987.Google Scholar
  4. 4.
    R.W. Hazelett:Iron and Steel Engineer, 1966, vol. 43, pp. 105–10.Google Scholar
  5. 5.
    J.F.B. Wood and P.C. Regan:Iron and Steel Engineer, 1971, December, pp. 47–55.Google Scholar
  6. 6.
    J.F.B. Wood and C.J. Petry:Steelmaking Conf. Proc., 1987, vol. 70, pp. 267–75.Google Scholar
  7. 7.
    B.C. Whitmore and J.W. Hlinka:TMS-A1ME Open Hearth Proc., 1969, vol. 52, pp. 40–45.Google Scholar
  8. 8.
    B.C. Whitmore and J.W. Hlinka:J. Met., 1969, August, pp. 68–73.Google Scholar
  9. 9.
    K. Ushijima:Near Net Shape Casting, Iron and Steel Society, Warrendale, PA, 1987, pp. 31–36.Google Scholar
  10. 10.
    S. Itoyama, M. Nakabe, S. Nozaki, Y. Kakiu, and N. Bessho:Tetsu-to-Hagané, 1985, vol. 71 (10), pp. A249-A252.Google Scholar
  11. 11.
    S. Itoyama, H. Nakato, T. Nozaki, Y. Habu, and T. Emi:Steelmaking Proc., 1986, vol. 69, pp. 833–36.Google Scholar
  12. 12.
    C.J. Petry:Light Metal Age, 1975, vol. 15, pp. 34–36.Google Scholar
  13. 13.
    D.B. Spalding and B.E. Launder:Computer Methods in Applied Mechanics and Engineering, 1974, vol. 3, pp. 269–89.CrossRefGoogle Scholar
  14. 14.
    V.R. Voller and C. Prakash:Int. J. Heat Mass Transfer, 1987, vol. 30 (8), pp. 1709–19.CrossRefGoogle Scholar
  15. 15.
    C. Prakash, M. Samonds, and A.K. Singhal:Int. J. Heat Mass Transfer, 1987, vol. 30 (12), pp. 2690–94.CrossRefGoogle Scholar
  16. 16.
    D.R. Atthey:J. Inst. Math. Appl., 1974, vol. 13, pp. 353–66.Google Scholar
  17. 17.
    N. Shamsunder and E.M. Sparrow:J. Heat Transfer, 1975, vol. 97, pp. 333–40.Google Scholar
  18. 18.
    W.D. Bennon and F.P. Incropera:Int. J. Heat Mass Transfer, 1987, vol. 30, pp. 2161–70.CrossRefGoogle Scholar
  19. 19.
    S. Asai and J. Szekely:Ironmaking and Steelmaking (Q.), 1975, no. 3, pp. 205–13.Google Scholar
  20. 20.
    T. Takhaski and I. Hagiwara:Jpn. Inst. Met. J., 1965, vol. 29 (6), pp. 637–42.Google Scholar
  21. 21.
    J. Szekely:Fluid Flow Phenomena In Metals Processing, Academic Press, New York, NY, 1979.Google Scholar
  22. 22.
    S.V. Patankar:Numerical Heat Transfer, 1981, vol. 4, pp. 409–25.CrossRefGoogle Scholar
  23. 23.
    D.J. Ortolono and F.K. Hines:Advances in Instrumentation, 1983, vol. 38, Part 2, pp. 1449–2145.Google Scholar
  24. 24.
    Y. Sugitani:ISIJ Fall Meeting, 1985, Niigata, Japan, Paper No. 22.Google Scholar
  25. 25.
    R.D. Pehlke, A. Jeyarajan, and H. Wada: Final Report, NSF Grant No. DAR 78-26171, 1978.Google Scholar
  26. 26.
    R.N. Barfield and J.A. Kichiner:J. Iron Steel Inst., 1965, p. 324.Google Scholar
  27. 27.
    W.R.D. Jones and W.L. Bartett:J. Inst. Met., 1952, vol. 81, pp. 145–52.Google Scholar
  28. 28.
    F.V. Dean, J.R. Kerr, and A. Hellawell:J. Inst. Met., 1962, vol. 90, pp. 234–40.Google Scholar
  29. 29.
    M. Zief and W.R. Wilcox:Fractional Solidification, Marcel Dekker, Inc., New York, NY, 1967.Google Scholar
  30. 30.
    A. Suzuki:Nippon Kinzoku Gakkaisi, 1968, vol. 32 (12), pp. 1301–04.Google Scholar
  31. 31.
    R.E. Spear and T.F. Bower:Trans. Am. Foundrymen’s Soc., 1963, vol. 71, pp. 209–15.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 1992

Authors and Affiliations

  • B. Farouk
    • 1
  • D. Apelian
    • 2
  • Y. G. Kim
    • 3
  1. 1.Department of Mechanical Engineering and MechanicsDrexel UniversityPhiladelphia
  2. 2.Worcester Polytechnic InstituteWorcester
  3. 3.Steelmaking DepartmentKang Won IndustriesPohang CitySouth Korea

Personalised recommendations