Journal of Phase Equilibria

, Volume 15, Issue 5, pp 483–499 | Cite as

Thermodynamic assessment of the copper-oxygen system

  • B. Hallstedt
  • D. Risold
  • L. J. Gauckler
Section I: Basic and Applied Research


The Cu-O system shows complete miscibility between the metallic liquid and the oxide liquid above ∼1623 K and a miscibility gap below that temperature. Because of the practical importance of the system, a wealth of experimental data exists, both on the phase diagram and on the thermodynamic properties. These data have been reviewed, and a consistent set of thermodynamic model parameters has been optimized. An ionic two-sublattice model was used to describe the liquid phase and was found to represent accurately the experimental data.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Cited References

  1. 1831Neu:.
    F.E. Neumann, “Investigation of Specific Heat of Minerals,”Ann. Phys. Chem. (Poggendorff), 23,1–39 (1831) in German.ADSCrossRefGoogle Scholar
  2. 1841Reg:.
    V. Regnault, “On the Specific Heat of Elements and Compounds,”Ann. Chim. Phys., Ser.3,1,129–207 (1841) in French.Google Scholar
  3. 1865Kop:.
    H. Kopp, “Investigations of the Specific Heat of Solid Bodies,”Philos. Trans. R. Soc. (London), 155,71–202 (1865).CrossRefGoogle Scholar
  4. 1883Tho:.
    J. Thomsen,Thermochemische Untersuchungen, Vol. I, III, Barth, Leipzig (1883); (cited from [85Cha]).Google Scholar
  5. 04Hey:.
    E. Heyn,Z. Anorg. Chem., 39, 1–23 (1904); (cited from [12Sla]).CrossRefGoogle Scholar
  6. 06Dej:.
    P. Dejean, “On the Solidification of Copper,”Rev. Métall., 3,149–158(1906)in French.Google Scholar
  7. 08F00:.
    H.W. Foote and E.K. Smith, “On the Dissociation Pressures of Certain Oxides of Copper, Cobalt, Nickel and Antimony,”J. Am. Chem. Soc., 30, 1344–1350(1908).CrossRefGoogle Scholar
  8. 09All:.
    A.J. Allmand, “The Electromotive Behaviour of Cuprous Oxide and Cupric Hydroxide in Alkaline Electrolytes,”J. Chem. Soc. London, 95, 2151–2161 (1909).Google Scholar
  9. 10A11:.
    A. J. Allmand, “Affinity Relations of Cupric Oxide and of Cupric Hydroxide,”J. Chem. Soc. London, 97, 603–621(1910).Google Scholar
  10. 10Mag:.
    Magnus, Habilationsschrift, Tübingen (1910) in German; (cited from[31Ran]).Google Scholar
  11. 11All:.
    A.J. Allmand, “The Element Cu ∥ Cu2O Alkali ∥ H2 at 0°,“J. Chem. Soc. London, 99, 840–845 (1911).Google Scholar
  12. 12Rus:.
    A.S. Russell, “Measurements of the Specific Heat at Low Temperatures,”Physikal. Zeitschr, 13, 59–64 (1912).Google Scholar
  13. 12Sla:.
    R.E. Slade and F.D. Farrow, “An Investigation of the Dissociation Pressures and Melting Points of the System Copper-Cuprous Oxide,”Proc.R.Soc.(London)A, 87, 524–534 (1912).ADSCrossRefGoogle Scholar
  14. 16Tre:.
    W.D. Treadwell, “On the Oxygen Pressure of Some Oxides and the Carbon-Oxygen Chain at Higher Temperature,”Z. Elektrochemie, 22(21/22), 414–421 (1916)in German.Google Scholar
  15. 20Smy:.
    F.H. Smyth and H.S. Roberts, “The System Cupric Oxide, Cuprous Oxide, Oxygen,”J. Am. Chem. Soc., 42, 2582–2607 (1920).CrossRefGoogle Scholar
  16. 21Rob:.
    H.S. Roberts and F.H. Smyth, “The System Copper: Cupric Oxide: Oxygen,”J. Am. Chem. Soc., 43, 1061–1079(1921).CrossRefGoogle Scholar
  17. 28Clu:.
    K. Clusius and P. Harteck, “On the Specific Heat of Some Solids at Low Temperatures,”Z. Phys. Chem., 134, 243–263 (1928) in German.Google Scholar
  18. 29Mai:.
    CG. Maier, “Oxide Cells of Cadmium, Copper, Tin and Lead,”J.Am. Chem.Soc, 51,194–207(1929).CrossRefGoogle Scholar
  19. 29Mil:.
    R.W. Millar, “The Heat Capacities at Low Temperatures of ‘Ferrous Oxide’, Magnetite and Cuprous and Cupric Oxides,”J. Am. Chem. Soc., 51, 215–222(1929).CrossRefGoogle Scholar
  20. 29Vog:.
    R. Vogel and W. Pocher, “On the System Copper-Oxygen,”Z. Metallkd., 21(10), 333–337 (1929) in German; 27(11), 368–371 (1929) in German.Google Scholar
  21. 31Ran:.
    M. Randall, R.F. Nielsen, and G.H. West, “Free Energy of Some Copper Compounds,”INd.Eng.Chem., 23 (4), 388–400(1931).CrossRefGoogle Scholar
  22. 32War:.
    H. von Wartenberg and H. Werth, “The Heat of Formation of Copper Oxide,”Z. Elektrochemie Angew. Phys. Chem., 38(7), 401–402 (1932) in German.Google Scholar
  23. 33A11:.
    N.P. Allen and T. Hewitt, “The Equilibrium of the Reaction between Steam and Molten Copper,”J.Inst.Met., 51, 257–275 (1933).Google Scholar
  24. 33Woh:.
    L. Wöhler and N. Jochum, “Thermochemical Measurements of the Oxides of Copper, Rhodium, Palladium, and Iridium,”Z. Phys. Chem.,167(3),169–179(1933)inGerman.Google Scholar
  25. 34Bil:.
    W. Biltz, G. Rohlffs, and H.U. von Vogel, “Construction and Use of a High Temperature Calorimeter with Closed Reaction Zone,”Z. Anorg.Allg.Chem.,220(2), 113–141 (1934) in German.CrossRefGoogle Scholar
  26. 34Rhi:.
    F.N. Rhines, and C.H. Mathewson, “Solubility of Oxygen in Solid Copper,”Trans. AIME, 111, 337–353 (1934).Google Scholar
  27. 41Phi:.
    A. Phillips and E.N. Skinner, “Solubility of Oxygen in High-Purity Copper,”Trans. AIME, 143, 301–308 (1941).Google Scholar
  28. 44Fei:.
    W. Feitknecht, “On the Solubility Product of the Copper Oxides and Hydroxides and on the Solubility of Copper Hydroxide in Soda Lye,”Helv. Chim. acta, 27, 771–775 (1944) in German.CrossRefGoogle Scholar
  29. 49Nas:.
    R. Näsänen and V. Tamminen, “The Equilibria of Cupric Hydroxysalts in Mixed Aqueous Solutions of Cupric and Alkali Salts at 25°,”J.Am. Chem. Soc., 71, 1994–1998(1949).CrossRefGoogle Scholar
  30. 50Gir:.
    D.J. Girardi and CA. Siebert, “Equilibrium in the Reaction of Carbon Dioxide with Liquid Copper from 1090 to 1300 °C,”Trans. AIME, 188(9), 1168–1170(1950).Google Scholar
  31. 51Hu:.
    J.-H. Hu and H.L. Johnston, “Low Temperature Heat Capacities of Inorganic Solids. IX. Heat Capacity and Thermodynamic Properties of Cuprous Oxide from 14 to 300°K,”J. Am. Chem. Soc., 73, 4550–4551(1951).CrossRefGoogle Scholar
  32. 52Chi:.
    P. Chiche, “Contribution to the Determination of the Standard Thermodynamic Properties of the Copper Oxides,”Ann. Chim., Ser. 12, 7, 361–398 (1952) in French; P. Chiche and M. Dode, “On the Standard Thermodynamic Properties of the Copper Oxides,”C.R. Acad. Sci.,232,618-620 (1951) in French.Google Scholar
  33. 53Hu:.
    J.-H. Hu and H.L. Johnston, “Low Temperature Heat Capacities of Inorganic Solids. XVI. Heat Capacity of Cupric Oxide from 15 to 300 °K,”J. Am. Chem. Soc., 75, 2471–2473 (1953).CrossRefGoogle Scholar
  34. 55Ass:.
    P. Assayag, “Contribution to the Study of the Thermodynamic Properties of Copper-Platinum Alloys,”Ann. Chim., Ser. 12, 10, 637–665 (1955) in French.Google Scholar
  35. 56San:.
    K. Sano and H. Sakao, “Physico-Chemical Investigations on CopperSmelting,”Mem.Fac.Eng.,Nagoya Univ., 8, 137–163 (1956).Google Scholar
  36. 57Kiu:.
    K. Kiukkola and C. Wagner, “Measurements on Galvanic Cells Involving Solid Electrolytes,”J. Electrochem. Soc., 104(6), 379–387 (1957).CrossRefGoogle Scholar
  37. 58Hil:.
    D.G. Hill, B. Porter, and A.S. Gillespie, Jr., “Electrochemical Measurement of Oxide Formation,”J. Electrochem. Soc., 105(7), 408–412(1958).CrossRefGoogle Scholar
  38. 58Pet:.
    H. Peters and G. Mann, “Electrochemical Investigation of the Reduction Equilibriaof Metal Oxides,”Naturwissenschaften, 45(9), 209 (1958) in German.ADSCrossRefGoogle Scholar
  39. 60Bar:.
    P.B. Barton, Jr. and P.M. Bethke, “Thermodynamic Properties of Some Synthetic Zinc and Copper Minerals,”Am. J. Sci., 258-A, 21–34 (1960).Google Scholar
  40. 62Gre:.
    L.V. Gregor, “The Heat Capacity of Cuprous Oxide from 2.8 to 21°K,”J.Phys.Chem., 66, 1645–1647(1962).CrossRefGoogle Scholar
  41. 62Oke:.
    M. O’Keeffe and F.S. Stone, ”The Magnetic Susceptibility of Cupric Oxide,”J. Phys. Chem. Solids, 23, 261–266 (1962).CrossRefGoogle Scholar
  42. 63Gad:.
    A.M.M. Gadalla, W.F. Ford, and J. White, “Equilibrium Relationships in the System CuO-Cu2O-SiO2,”Trans. Br. Cer. Soc., 62, 45–66(1963).Google Scholar
  43. 64Mat:.
    Y. Matsushita and K. Goto, “The Application of Oxygen Concentration Cells with the Solid Electrolyte, ZrO2CaO to Basic Research Works in Iron and Steel Making,”Tetsu-to-Hagané Overseas,4(2), 128-138. (1964); Y. Matsushita and K Goto, “The Application of Oxygen Concentration Cells with the Solid Electrolyte ZrO2CaO to Thermodynamic Research,”Thermodynamics, Vol. I, Proc. Symposium July 22–27, 1965, Vienna, Austria, IAEA, Vienna, 111-129 (1966).Google Scholar
  44. 64Sch:.
    N.G. Schmahl and F. Müller, “Investigations into Equilibria in the System Copper-Iron-Oxygen,”Arch. Eisenhiittenwes., 35(6), 527–532 (1964) in German.Google Scholar
  45. 65Bel:.
    G.R. Belton and E.S. Tankins, “The Thermodynamic Behavior of Oxygen in Liquid Binary-Metallic Solvents—A Simple Solution Model”Trans.Metall.Soc.AlME, 233(10), 1892–1898(1965).Google Scholar
  46. 65Plu:.
    W Pluschkell and H.-J. Engell, “On an Electro-Chemical Method for the Determination of the Oxygen Content of Copper Melts,”Z. Metallkd., 56(7), 450–452 (1965) in German.Google Scholar
  47. 65Sch:.
    P. Schindler, H. Althaus, F. Hofer, and W Minder, “Solubility Products of Metal Oxides and Hydroxides. Part 10. Solubility Product of Zinc Oxide, Copper Hydroxide, and Copper Oxide; Dependence of Particle Size and Molar Surface. A Contribution to Thermodynamics of Solid-Liquid Interfaces,”Helv. Chim. acta, 48(5), 1204–1215 (1965) in German.CrossRefGoogle Scholar
  48. 65Ste:.
    B.C.H. Steele and C.B. Alcock, “Factors Influencing the Performance of Solid Oxide Electrolytes in High-Temperature Thermodynamic Measurements,”Trans. Metall. Soc. AIME, 233(7), 1359–1367(1965).Google Scholar
  49. 65Tan:.
    E.S. Tankins, J.F. Erthal, and M.K. Thomas, Jr., “The Thermodynamic Properties of Dilute Solutions of Oxygen in the Liquid Binary Cu-Ni Alloys,”HJ. Electrochem. Soc., 112(4), 446–450 (1965).CrossRefGoogle Scholar
  50. 65Tre:.
    Yu. D. Tret’ yakov and H. Schmalzried, “On the Thermodynamics of Spinel Phases (Chromite, Ferrite, Aluminate),”Ber. Bunsenges. Phys. Chem., 69(5), 396–402 (1965) in German.Google Scholar
  51. 66Fis:.
    W.A. Fischerand W. Ackermann, “Direct Electrochemical Determination of the Oxygen Content of Metal Melts. I. Investigations on Iron, Cobalt, Nickel, and Copper Melts,”Arch. Eisenhüttenwes., 37(1), 43–47 (1966) in German.Google Scholar
  52. 66Ost:.
    J. Osterwald, “Emf Measurements of Liquid Copper in Equilibrium with Solid or Liquid Copper(I) Oxide,”Z. Phys. Chem. Neue Folge, 49(3/4), 138–146(1966) in German.Google Scholar
  53. 66Ric:.
    H. Rickert and H. Wagner, “Electrochemical Measurement of the Oxygen Activity in Liquid Copper,”Electrochim. acta, 11, 83–91 (1966) in German; H. Rickert, H. Wagner, and R. Steiner, “Electrochemical Measurement of the Oxygen Activity and Diffusion in Metals with Zirconium Dioxide as Solid Electrolyte,”Chem. Ing. Tech., 38(6), 618–622 (1966) in German.CrossRefGoogle Scholar
  54. 66Sel:.
    CM. Sellars and F. Maak, “The Thermodynamic Properties of Solid Au-Ni Alloys at 775 to 935 °C,”Trans. Metall. Soc. AIME, 236(4), 457–464 (1966).Google Scholar
  55. 66Wil:.
    T.C. Wilder, “Direct Measurement of the Oxygen Content in Liquid Copper; the Activity of Oxygen in Dilute Liquid Cu-0 Alloys,”Trans. Metall. Soc. AIME, 236(1), 1035–1040 (1966).Google Scholar
  56. 67Bid:.
    L.R. Bidwell, “Free Energy of Formation of Cupric Oxide,”J. Electrochem. Soc., 114(1), 30–31 (1967).CrossRefGoogle Scholar
  57. 67Dia:.
    CM. Diaz and F.D. Richardson, “Electrochemical Measurement of Oxygen in Molten Copper,”Trans. Inst. Min. Metall., 76, C196-C203(1967).Google Scholar
  58. 67Eln:.
    M.M.A. El-Naggar, G.B. Horsley, and N.A.D. Parlee, “Application of a Solid Electrolytic Cell for Measuring Equilibrium Po2over Liquid Metal-Oxygen Solutions,”Trans. Metall. Soc. AIME, 239(12), 1994–1996(1967).Google Scholar
  59. 67Hoc:.
    K. Hochgeschwender and T.R. Ingraham, “Use of Thermal Conductivity Gas Analysis for Thermodynamic Measurements on the Dissociation of CuO, Mn2O3 and MnO2,”Can. Metall. Q., 6(1), 71–84 (1967); K. Hochgeschwender and T.R. Ingraham, “Thermodynamic Investigation of the Dissociation of Some Metal Oxides by Continuous GasAnalysis,” Erzmetall, 21(2), 58–63 (1968) in German.Google Scholar
  60. 67Mah:.
    A.D. Mah, L.B. Pankratz, W.W. Weiler, and E.G. King, “Thermodynamic Data for Cuprous and Cupric Oxides,” U.S. Bureau of Mines, Rep. Investigations 7026 (1967).Google Scholar
  61. 67Rei:.
    G. Reimann, Dr.-Ing. Dissertation, TU. Berlin (1967) in German; (cited from [69Ost ]).Google Scholar
  62. 67Riz:.
    F.E. Rizzo, L.R. Bidwell, and D.F. Frank, “The Standard Free Energy of Formation of Cuprous Oxide,”Trans. Metall. Soc. AIME, 239(4),593–596(1967).Google Scholar
  63. 67Sti:.
    W. Stichel, Dr.-Ing. Dissertation, T.U. Berlin (1967) in German; (cited from [69Ost ]).Google Scholar
  64. 67Tan:.
    E.S. Tankins and W. Beck, “On the Thermodynamics of Dilute Solutions of Oxygen in Liquid Copper-Cobalt Alloys,”Z. Metallkd., 58(10), 721–724 (1967) in German; E.S. Tankins, “Activity of Oxygen in Cu-Au, Cu-Ag, Cu-Pt, Cu-Ni, Cu-Co and Cu-Fe Alloys,”Can. Metall. Q., 9(1), 353–357 (1970); E.S. Tankins, “Thermodynamic Properties of Dissolved Oxygen in Liquid ton-Copper Alloys,”Can. Metall. Q., 10(l),21-23(1911).Google Scholar
  65. 68Cha:.
    G.G. Charette and S.N. Flengas, “Thermodynamic Properties of the Oxides of Fe, Ni, Pb, Cu, and Mn, by EMF Measurements,”J. Electrochem. Soc., 115(8), 796–804 (1968).CrossRefGoogle Scholar
  66. 68Ger:.
    J. Gerlach, J. Osterwald, and W. Stichel, “Coulometric Determination of the Miscibility Gap between Liquid Copper and Copper(I) Oxide,”Z. Metallkd., 59(1), 576–579 (1968) in German.Google Scholar
  67. 68Kod:.
    K. Kodera, I. Kusunoki, and S. Shimizu, “Dissociation Pressures of Various Metallic Oxides,”Bull. Chem. Soc. Jpn., 41 (5), 1039–1045(1968).CrossRefGoogle Scholar
  68. 68Kux:.
    U. Kuxmann and K. Kurre, “The Miscibility Gap in the System Copper-Oxygen and the Influence on it by the Oxides CaO, SiO2, A12O3, MgOAl2O3, andZrO2Erzmetall, 21(5), 199–209 (1968) in German.Google Scholar
  69. 68Ost:.
    J. Osterwald, “On the Phase Diagram of the System Copper-Oxygen in the Temperature Range of Liquid Phases,”Z. Metallkd., 59(7), 573–576 (1968) in German.Google Scholar
  70. 68Rig:.
    M. A. Rigdon and R.E. Grace, “Near-Equilibrium Kinetics of the Dissociation of Cupric Oxide,”Trans. Metall. Soc. AIME, 242(5), 822–825(1968).Google Scholar
  71. 69Blo:.
    U. Block and H.-P. Stüwe, “The Solubility of Oxygen in Binary and Ternary Alloys of Tin, Copper and Silver at 1200 °C,”Z. Metallkd., 60(9), 709–112(1969)in German.Google Scholar
  72. 69Fru:.
    R.J. Fruehan and F.D. Richardson, “The Activities of Oxygen in Liquid Copper and Its Alloys with Silver and Tin,”Trans. Metall. Soc. AIME, 245(8), 1721–1726(1969).Google Scholar
  73. 69Kaz:.
    E.K. Kazenas, D.M. Chizhikov, and Yu. V. Tsvetkov, “The Dissociation Pressures of Copper Oxides,”Akad. Nauk SSSR, Izv. Met., (2), 60–62 (1969) in Russian; TR:Russ. Metall, (2), 46–48 (1969).Google Scholar
  74. 69Mor:.
    J. Moriyama, N. Sato, H. Asao, and Z. Kozuka, “Thermodynamic Study on the Systems of Metals and Their Oxides by EMF Measurements Using Solid Electrolyte,”Mem. Fac Eng., Kyoto Univ., 31, 253–261(1969).Google Scholar
  75. 69Nun:.
    L. Nuñmez, G. Pilcher, and H.A. Skinner, “Hot-Zone Reaction Calorimetry. The Enthalpies of Formation of Copper Oxides,”J. Chem. Thermodyn., 1, 31–43 (1969).CrossRefGoogle Scholar
  76. 69Ost:.
    J. Osterwald, G. Reimann, and W. Stichel, “On the Oxygen Activity inLiquid Copper,”Z.Phys.Chem.Neue Folge, 66(1–3), 1–7(1969) in German.Google Scholar
  77. 69Pas:.
    R.L. Pastorek and R.A. Rapp, “The Solubility and Diffusivity of Oxygen in Solid Copper from Electrochemical Measurements,”Trans. Metall. Soc. AIME, 245(8), 1711–1720 (1969).Google Scholar
  78. 70Bar:.
    G.B. Barbi, “Thermodynamic Stability of Copper Oxides,”Gazz. Chim. Ital., 100, 64–74 (1970) in Italian.Google Scholar
  79. 70Bug:.
    W.G. Bugden and J.N. Pratt, “Solid Electrolyte Galvanic Cell Studies: Free Energies of Formation of CoO and CO3O4,”Trans. Inst. Min.Metall., 79, C221-C225 (1970).Google Scholar
  80. 70Eln:.
    M.M.A. El-Naggar and N.A.D. Parlee, “The Free Energy of Solution of Oxygen in Liquid Copper by a Solid Electrolytic Cell Technique,”Metall. Trans., 1(10), 2975–2977 (1970).Google Scholar
  81. 70Fis:.
    W.A. Fischer and G. Pateisky, “The Suitability of Solid Metal/Metallic Oxide Mixtures as Reference Potentials in Oxygen Measuring Cells,”Arch. Eisenhüttenwes., 41(7), 661–673 (1970) in German.Google Scholar
  82. 70Nan:.
    C.R. Nanda and G.H. Geiger, “On the Thermodynamics of Oxygen in Molten Copper, Cu-Sn, and Cu-Ag Alloys,”Metall. Trans., 1(5), 1235–1243 (1970).Google Scholar
  83. 70Tsu:.
    I. Tsukahara, “Determination of Oxygen in Molten Copper and Copper-Tin Alloy by the EMF Method,”J. Jpn. Inst. Met.,34(7), 679–684 (1970) in Japanese.Google Scholar
  84. 71Fis:.
    W.A. Fischer and D. Janke, “The Free Enthalpies of Reaction for the Dissolution of Oxygen in Melts of Copper-Nickel, Copper-Cobalt, and Copper-Iron Alloy s,”Z. Metallkd., 62(10), 747–751 (1971) in German.Google Scholar
  85. 71Jac:.
    K.T. Jacob and J.H.E. Jeffes, “Thermodynamics of Oxygen in Liquid Copper, Lead and Copper-Lead Alloys,”Trans. Inst. Min.Metall., 80, C32-C41 (1971).Google Scholar
  86. 71Ois:.
    T. Oishi, Z. Kozuka, and J. Moriyama, “Thermodynamic Properties of Oxygen in Molten Copper and the Effects of Tin and Nickel on These Properties,”Trans. Jpn. Inst. Met., 12, 410–416 (1971); Z. Kozuka, K. Suzuki, T. Oishi, and J. Moriyama, “Estimation of Oxygen Contents in Molten Copper by Electrochemical Methods,”J. Jpn. Inst.Met.,32(11), 1132-1137(1968) in Japanese.Google Scholar
  87. 71Slo:.
    A.A. Slobodyanyuk, Yu. D. Tret’yakov, and A.F. Bessonov, “Investigation of the Thermodynamic Stabilities of Copper Silicates and Aluminates by an Electromotive Force Method Using a Solid Electrolyte,”Russ.J.Phys.Chem., 45(7), 1069–1070(1971).Google Scholar
  88. 71Tho:.
    W.T. Thompson and P. Tarassoff, “Determination of Oxygen in CopperwithanemfProbe,”Can.metall.Q., 10(4), 315–321(1971).Google Scholar
  89. 72Bou:.
    F. Bouillon and J. Országh, “Solubility of Oxygen in Single Crystal Copper,”J. Phys. Chem. Solids, 33, 1533–1539 (1972) in French.ADSCrossRefGoogle Scholar
  90. 72Tan:.
    E.S. Tankins and N.A. Gokcen, “Thermodynamic Properties of Dilute Solutions of Oxygen in Liquid Ag-Cu, Ag-Sn, and Cu-Sn Systems,”High Temp. Sci., 4, 393–404 (1972).Google Scholar
  91. 73Bis:.
    A.K. Biswas and H.P. Seow, “The Thermodynamic Properties of Oxygen in Liquid Copper-Iron Alloys,”Can. Metall. Q., 12(3), 257–264(1973).Google Scholar
  92. 73Kul:.
    A.D. Kulkarni, “The Thermodynamic Studies of Liquid Copper Alloys by Electromotive Force Method: Part I. The Cu-O, Cu-Fe-O, and Cu-Fe Systems,“Metall. Trans., 4(l), 1713–1721 (1973).CrossRefGoogle Scholar
  93. 73Obe:.
    K.-E. Öberg, L.M. Friedman, W.M. Boorstein, and R.A. Rapp, “The Diffusivity and Solubility of Oxygen in Liquid Copper and Liquid Silver fromElectrochemicalMeasurements,”Metall Trans., 4(l), 61–67(1973).CrossRefGoogle Scholar
  94. 74Hen:.
    A. Hendry and H.B. Bell, “Thermodynamics of Liquid Copper-Silicon-Oxygen Alloys,”Trans. Inst. Min. Metall., 83, C10-C13 (1974).Google Scholar
  95. 74Sig:.
    G.K. Sigworth and J.F. Elliott, “The Thermodynamics of Dilute Liquid Copper Alloys,”Cal. Metall. Q., 13(3), 455–461 (1974).Google Scholar
  96. 74Sta:.
    L.-I. Staffansson, L. Bentell, and I. Svensson, “The Influence of Selenium on the Oxygen Activity in Liquid Copper,”Scand. J. Metall., 3, 153–157 (1974).Google Scholar
  97. 75Jac:.
    K.T. Jacob and C.B. Alcock, “Thermodynamics of CuAlO2 and CuAl2O4 and Phase Equilibria in the System Cu2O-CuO-Al2O3,”J. Am. Ceram. Soc., 58(5-6), 192–195 (1975).CrossRefGoogle Scholar
  98. 75Jan:.
    D. Janke and W.A. Fischer, “Thermodynamic Relations for the Solution Behaviour of Oxygen in Copper Base Melts,”Metall (Berlin), 29(12), 1189–1193 (1975) in German.Google Scholar
  99. 75Mosl:.
    Z. Moser, K. Fitzner, and W. Zakulski, “Free Energies of Formation of NiO and Cu2O by EMF Measurements Involving Solid Electrolytes,”Bull.Acad.Pol.Sci.Ser. Techn., 25(3), 243–248 (1975).Google Scholar
  100. 75Mos2:.
    Z. Moser and K. Fitzner, “Use of Solid Electrolytes to Analyze the Thermodynamic Properties in the System Cu-O,”Rudy Met. Niezefaz., 20(11), 510–513(1975)inPolish.Google Scholar
  101. 75San:.
    N.H. Santander and O. Kubaschewski, “The Thermodynamics of the Copper-Oxygen System,”High Temp.—High Press., 7, 573–582(1975).Google Scholar
  102. 76Mos:.
    Z. Moser and K. Fitzner, “EMF Measurements Involving Solid Electrolytes in the Cu-O System,”Bull. Acad. Pol. Sci., Ser Techn., 24(3), 215–220 (1976).Google Scholar
  103. 76Wad:.
    T. Wada, K. Fueki, and T. Mukaibo, “Determination of the Solubility of Oxygen in Copper by the Coulometric Method,”Bull. Chem. Soc.Jpn., 49(11), 3317–3318(1976).CrossRefGoogle Scholar
  104. 77Hor:.
    V.M. Horrigan, “The Solubility of Oxygen in Solid Copper,”Metall.Trans.A, 8(5),785–787(l917).Google Scholar
  105. 77Sad:.
    S.H. Sadat-Darbandi, “Determination of Equilibrium and Transport Properties of the Liquid Phases of the System Copper-Oxygen,” Dr.-Ing. Dissertation, T.U. Berlin (1977) in German.Google Scholar
  106. 78Fit:.
    K. Fitzner, “Solubility and Activity of Oxygen in Liquid Copper-Silver Alloys,rdZ. Metallkd., 69(12), 751–754 (1978).Google Scholar
  107. 78Jan:.
    D. Janke, “Electrolytic Deoxidation of Cobalt, Nickel, Copper, andSilverMelts,”Z. Metallkd., 69(5), 302–307 (1978)in German.Google Scholar
  108. 78Oke:.
    M. O’Keeffe and J.-O. Bovin, “The Crystal Structure of Paramelaconite, Cu4O3,”Am. Mineralogist, 63, 180–185 (1978).Google Scholar
  109. 79Eri:.
    H. Eric and M. Timucin, “Equilibrium Relations in the System Nickel Oxide-Copper Oxide,”Metall. Trans. B, 10, 561–563 (1979).CrossRefGoogle Scholar
  110. 79Fit:.
    K. Fitzner and Z. Moser, “Activity of Oxygen in Dilute Liquid Cu-O Alloys,”Met. Technol., 6, 273–275 (1979).Google Scholar
  111. 79Hyt:.
    P. Hytönen and P. Taskinen, “Activity of Oxygen in Dilute Cu-Ni and Cu-Sb Alloys,”Scand. J. Metall., 8, 123–127 (1979).Google Scholar
  112. 79Kem:.
    N. Kemori, I. Katayama, and Z. Kozuka, “Measurements of Standard Molar Gibbs Energies of Formation of NiO, Cu2O, and CoO from Solid and Liquid Metals and Oxygen Gas by an e.m.f. Method at High Temperatures,”J. Chem. Thermodyn., 11, 215–228 (1979); N. Kemori, I. Katayama and Z. Kozuka, “Measurements of Standard Molar Free Energies of Formation of NiO, Cu2O, and CoO by EMF Method at High Temperatures,”J. Jpn. Inst. Met., 47(8), 803–808 (1977) in Japanese.CrossRefGoogle Scholar
  113. 79Puc:.
    F. Puchi, “Contribution to the Measurement of Equilibrium Partial Pressures of Oxygen in Copper Melts,” Dr.-Ing. Dissertation, T.U. Berlin (1979) in German; F. Puchi and M.G. Frohberg, “The Influence of Bismuth on the Oxygen Activity in Liquid Copper,”Metall (Berlin),33(5), 449–450(1979).Google Scholar
  114. 79Sud:.
    VS. Sudavtsova, N.I. Kuz’menko, G.I. Batalin, V.A. Anoshin, and V.M. Ilyushenko, “Activity of Oxygen in Molten Copper,”Ukr. Khim. Zh., 45(4), 306–310 (1979) in Russian; TR:Soviet Progress in Chemistry,45(4), 18–22(1979).Google Scholar
  115. 79Tas:.
    P. Taskinen and H. Hiltunen, “Thermodynamics of Oxygen in Dilute Cu-Bi Alloys at 1100-1200 °C,”Scand. J. Metall., 8, 39–42 (1979).Google Scholar
  116. 80Kem:.
    N. Kemori, I. Katayama, and Z. Kozuka, “Thermodynamic Study of Oxygen in Liquid Copper,”Trans. Jpn. Inst. Met., 21, 275–284(1980).Google Scholar
  117. 80Sug:.
    E. Sugimoto, S. Kuwata, and Z. Kozuka, “Measurements of Standard Free Energies of Formation of Various Oxides by E.M.F. Method with Solid Oxide Electrolyte at Low Temperatures,”J. Jpn. Inst. Met., 44(6), 644–651 (1980) in Japanese.Google Scholar
  118. 81 Alb:.
    E. Albert, R. Kirchheim, and H. Dietz, “Diffusivity of Oxygen in Copper,”Scr.Metall., 15(6), 673–677(1981).CrossRefGoogle Scholar
  119. 81Kay:.
    Y. Kayahara, K. Ono, T. Oishi, and J. Moriyama, “Thermodynamic Study of the Liquid Cu-O System,”Trans. Jpn. Inst. Met., 22(7), 493–500 (1981); Y. Kayahara, K. Ono, T. Oishi, and J. Moriyama, “Thermodynamic Study of the Liquid Cu-O System,”J. Jpn. Inst. Met.,42(5), 527–533 (1978) in Japanese.Google Scholar
  120. 81Ots:.
    S. Otsuka and Z. Kozuka, “Activities of Oxygen in Liquid Copper and Silver from Electrochemical Measurements,”Metall. Trans. B, 72, 501–507(1981).CrossRefGoogle Scholar
  121. 81Tasl:.
    P. Taskinen, “Liquidus Equilibria and Solution Thermodynamics in Copper-Rich Copper-Nickel-Oxygen Alloys,”Acta Polytechnica Scand., Chemistry Including Metallurgy Series, No. 145, Helsinki (1981).Google Scholar
  122. 81Tas2:.
    P. Taskinen, “The Standard Gibbs Energy of Formation of Cu2O(s)at 1066-1220 °C,”Scand J. Metall., 70,189–191 (1981).Google Scholar
  123. 82Cha:.
    M.W. Chase, Jr., J.L. Curnutt, J.R. Downey, Jr., R. A. McDonald, A.N. Syverud, and E.A. Valenzuela, “ JANAF Thermochemical Tables, 1982 Supplement,”J. Phys. Chem. Ref. Data, 11, 695–940 (1982).ADSCrossRefGoogle Scholar
  124. 83 Ani:.
    S. Anik, “On the Solution Behaviour of Oxygen in Binary Alloys with Particular Consideration of Experimental Results in the System Copper-Oxygen-Bismuth at 1200 °C, Dr.-Ing. Dissertation, T.U. Berlin (1983) in German; S. Anik. M.G. Frohberg, and M.L. Kapoor, “Experiments and Theoretical Considerations on the Solution of Oxygen inBinary Metal Alloys,”Ber.Bunsenges. Phys. Chem.,87,1201–1204 (1983); S. Anik and M.G. Frohberg, “Investigation of the Thermodynamics of Oxygen and the Determination of Phase Boundaries in the System Copper-Oxygen-Bismuth at 1200 °C,” Z.Metallkd., 74(8), 530–534 (1983) in German; S. Anik and M.G. Frohberg, “Thermodynamics and Solubility of Oxygen in Liquid Copper-Lead Alloys at 1200 °C from E.M.F. Measurements,”Ber. Bunsenges. Phys. Chem.,88, 707-710 (1984); S. Anik and M.G. Frohberg, “Investigations of the Thermodynamics of Oxygen and the Determination of the Miscibility Gap in the System Copper-Oxygen-Lead at 1200 °C,” Z.Metallkd., 75(8), 586-589 (1984); M.G. Frohberg and S. Anik, “Electrochemical Investigation of the Thermodynamics of Oxygen in Copper Base Melts,”Metall (Berlin), 39(2), 135–139 (1985) in German; M.G. Frohberg and S. Anik, “Experimental Results on the Solution Behaviour of Oxygen in the Systems Cu-O-Bi and Cu-O-Pb,”Neue Hütte, 31(9), 344-347 (1986) in German; S. Anik and M.G. Frohberg, “Thermodynamic Behaviour of Oxygen in Molten Metallic Alloys,”Thermochemistry of Alloys, H. Brodowsky and H.-J. Schaller, Ed., Kluwer Academic Publishers, Dordrecht, The Netherlands, 419-428(1989).Google Scholar
  125. 83Nar:.
    M.L. Narula, V.B. Tare, and W.L. Worrell, “Diffusivity and Solubility of Oxygen in Solid Copper Using Potentiostatic and Potentiometric Techniques,”Metall. Trans. B, 14, 673–677 (1983).CrossRefGoogle Scholar
  126. 83Sch:.
    R. Schmid, “A Thermodynamic Analysis of the Cu-O System with an Associated Solution Model,”Metall. Trans. B, 14, 473–481 (1983).CrossRefGoogle Scholar
  127. 84Ham:.
    B. Hammer, D. Lenz, P. Reimers, T. Dudzus, and B.F. Schmitt, “The Solubility of Oxygen in Pure Copper,”Metall (Berlin), 38(1), 41–45 (1984)in German.Google Scholar
  128. 84Jan:.
    B. Jansson, “Evaluation of Parameters in Thermochemical Models Using Different Types of Experimental Data Simultaneously,” TRITA-MAC 234, Royal Institute of Technology, Stockholm, Sweden (1984).Google Scholar
  129. 84Neu:.
    J.P. Neumann, T. Zhong, and Y.A. Chang, “The Cu-O (Copper-Oxygen) System,”Bull. AlloyPhaseDiagrams, 5(2), 136–140 (1984).Google Scholar
  130. 84Tas:.
    P. Taskinen, “Thermodynamics of Liquid Copper-Oxygen Alloys at 1065-1450”°C,” Scand. J. Metall., 13, 75–82 (1984).Google Scholar
  131. 85Cha:.
    M.W. Chase,Jr., C. A. Davies, J.R. Downey,Jr. , D.J. Frurip, R.A. McDonald, and A.N. Syverud, “JANAF Thermochemical Tables, 3rd ed.,”J. Phys. Chem. Ref. Data, 74(Suppl. 1), 983–987 (1985).Google Scholar
  132. 85HU:.
    M. Hillert, B. Jansson, B. Sundman, and J. Ågren, “A Two-Sublattice Model for Molten Solutions with Different Tendency for Ionization,”Metall. Trans. A, 16(2), 261–266 (1985).CrossRefGoogle Scholar
  133. 85Mal:.
    C. Mallika, O.M. Sreedharan, and M.S. Chandrasekharaiah, “Determination of the Standard Gibbs Energy of Formation of Rh2O3(s) and IrO2(s) from Solid Oxide Electrolyte Electromotive Force Measurements,”J.Less-CommonMet., 107, 203–212 (1985).CrossRefGoogle Scholar
  134. 85Sun:.
    B. Sundman, B. Jansson, and J.-O. Andersson, “The Thermo-Calc DatabankSystem,”Calphad, 9(2), 153–190(1985).CrossRefGoogle Scholar
  135. 86Hol:.
    R.D. Holmes, H. St. C. O’Neill, and R.J. Arculus, “Standard Gibbs Free Energy of Formation for Cu2O, NiO, CoO and FexO: High Resolution Electrochemical Measurements Using Zirconia Solid Electrolytes from 900-1400 K,”Geochim. Cosmochim. Acta, 50, 2439–2452(1986).ADSCrossRefGoogle Scholar
  136. 86Neu:.
    J.P. Neumann and M. Venkatraman, “An Ambiguity in the Definition of the Activity Coefficient at Infinite Dilution,”Metall. Trans. A, 77(8), 1484–1485(1986).Google Scholar
  137. 86Ois:.
    T. Oishi, Y. Kondo, and K. Ono, “A Thermodynamic Study of Cu2O-CaO Melts in Equilibrium with Liquid Copper,”Trans. Jpn. Inst.Met. 27(12), 916–980(1986).Google Scholar
  138. 88One:.
    H. St. C. O’Neill, “Systems Fe-O and Cu-O: Thermodynamic Data for the Equilibria Fe-‘FeO,’ Fe-Fe3O4, ‘FeO’-Fe3O4, Fe3O4-Fe2O3, Cu-Cu2O, and Cu2O-CuO from emf Measurements,”AmericanMineralogist, 73, 470–486 (1988).Google Scholar
  139. 88See:.
    M.S. Seehra, Z. Feng, and R. Gopalakrishnan, “Magnetic Phase Transitions in Cupric Oxide,”J. Phys. C, SolidStatePhys., 21, L1051 - L1054(1988).ADSCrossRefGoogle Scholar
  140. 89Cha:.
    Y.A. Chang and K.-C. Hsieh, “Cu-O,”Phase Diagrams of Ternary Copper-Oxygen-Metal Systems, ASM International, Materials Park, OH, 19–25(1989).Google Scholar
  141. 89Hol:.
    R.D. Holmes, A.B. Kersting, and R.J. Arculus, “Standard Molar Gibbs Free Energy of Formation for Cu2O: High-Resolution Electrochemical Measurements from 900 to 1300 K,”J. Chem. Thermodyn., 27, 351–361(1989).CrossRefGoogle Scholar
  142. 90Xue:.
    J. Xue and R. Dieckmann, “The Non-Stoichiometry and the Point Defect Structure of Cuprous Oxide (Cu2_δO),”J. Phys. Chem. Solids, 51(11), 1263–1275(1990).ADSCrossRefGoogle Scholar
  143. 91Bou:.
    A. Boudène, “Thermochemical Investigations in the System La-Sr-Cu-O,” Dr.-Ing. Dissertation, T.H. Aachen (1991) in German.Google Scholar
  144. 91Din:.
    A.T. Dinsdale, “SGTE Data for Pure Elements,”Calphad, 15(4), 317–425(1991).CrossRefGoogle Scholar
  145. 91Sunl:.
    B. Sundman, “Modification of the Two-Sublattice Model for Liquids,”Calphad, 15(2), 109–119(1991).CrossRefGoogle Scholar
  146. 91Sun2:.
    B. Sundman, “An Assessment of the Fe-O System,”J. Phase Equilibria, 12(1), l21–140(199l).Google Scholar
  147. 92Bou:.
    C. Boudène, K. Hack, A. Mohammad, D. Neuschütz, and E. Zimmermann, “Experimental Investigation and Thermochemical Assessment of the System Cu-O,”Z. Metallkd., 83(9), 663–668 (1992).Google Scholar
  148. 92SGT:.
    Scientific Group Thermodata Europe, SGTE Substance Database at KTH (1992).Google Scholar
  149. 92Suz:.
    R.O. Suzuki, P. Bohac, and L.J. Gauckler, “Thermodynamics and Phase Equilibria in the Sr-Cu-O System,”J. Am. Ceram. Soc., 75(10), 2833–2842 (1992).CrossRefGoogle Scholar
  150. 94Suz:.
    R.O. Suzuki, P. Bohac, and L.J. Gauckler, “Thermodynamics and Phase Equilibria in the Ca-Cu-O System,”J. Am. Ceram. Soc., 77 (1), 41–48(1994).CrossRefGoogle Scholar
  151. 92Xue:.
    J. Xue and R. Dieckmann, “The High-Temperature Phase Diagram of the Cu-O System in the Stability Region of Cuprous Oxide (Cu2_δO),”High Temp.—High Press., 24, 271–284 (1992).Google Scholar
  152. 93One:.
    H. St. C. O’Neill and M.I. Pownceby, “Thermodynamic Data from Redox Reactions at High Temperatures. I. An Experimental and Theoretical Assessment of the Electrochemical Method Using Stabilized Zirconia Electrolytes, with Revised Values for the Fe-‘FeO, ’ Co-CoO, Ni-NiO and Cu-Cu2O Oxygen Buffers, and New Data for the W-W02 Buffer,”Contrib. Mineral. Petrol, 114, 296–314 (1993).ADSCrossRefGoogle Scholar

Copyright information

© ASM International 1994

Authors and Affiliations

  • B. Hallstedt
    • 1
  • D. Risold
    • 1
  • L. J. Gauckler
    • 1
  1. 1.Nonmetallic MaterialsSwiss Federal Institute of Technology (ETH)ZürichSwitzerland

Personalised recommendations