Advertisement

Metallurgical Transactions A

, Volume 19, Issue 3, pp 487–494 | Cite as

Test temperature and strain rate effects on the properties of a tungsten heavy alloy

  • A. Bose
  • D. Sims
  • R. M. German
Mechanical Behavior

Abstract

Liquid phase sintered tungsten heavy alloy specimens with a 90W-7Ni-3Fe composition were tested for temperature and strain rate effects on mechanical behavior. Both fracture stress and strain were measured for samples tested at 20, 300, or 600 °C, with crosshead speeds ranging from 0.004 to 400 mmJs in an argon atmosphere. Fracture surface examinations showed a dramatic increase in tungsten cleavage as the ductility increased. The effect of an increasing strain rate is a slight strength increase with a concomitant ductility decrease. Alternatively, higher test temperatures degrade strength with a nonsystematic effect on ductility; maximum ductility occurs at 300 °C and a slow strain rate. Surface oxidation at 600 °C greatly degrades ductility. The results are mathematically modeled using classic strain rate dependent equations.

Keywords

Ductility Metallurgical Transaction Test Temperature Ultimate Tensile Strength Crosshead Speed 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. German:Liquid Phase Sintering, Plenum Press,New York, NY, 1985, p. 228.Google Scholar
  2. 2.
    E. Ariel, J. Barta, and D. Brandon:Powder Met. Inter., 1973, vol. 5, pp. 126–29.Google Scholar
  3. 3.
    D. J. Jones and P. Munnery:Powder Met., 1967, vol. 10, pp. 156–73.Google Scholar
  4. 4.
    J. Kuzmick:Modem Developments in Powder Metallurgy, H. H. Hausner, ed., Plenum Press, New York, NY, 1966, vol. 3, pp. 166–72.Google Scholar
  5. 5.
    E.I. Larson and P.C. Murphy :Can. Min. Met. Bull., April 1965, pp. 413–20.Google Scholar
  6. 6.
    T. W. Penrice:Powder Metallurgy in Defense Technology, Metal Powder Industries Federation, Princeton, NJ, 1980, vol. 5, pp. 11–21.Google Scholar
  7. 7.
    W. G. Northcutt, Jr.: “Fabrication Development of Tungsten Alloy Penetrators,” Report Y-1994, Oak Ridge Y-12 Plant, Oak Ridge, TN, Aug. 1975.Google Scholar
  8. 8.
    U. Gerlach:Metall. Trans. A, 1986, vol. 17A, pp. 435–42.Google Scholar
  9. 9.
    K. S. Churn and D. N. Yoon:Powder Met., 1979, vol. 22, pp. 175–78.Google Scholar
  10. 10.
    R. M. German and K. S. Churn:Metall. Trans. A, 1984, vol. 15A, pp. 747–54.Google Scholar
  11. 11.
    T. K. Kang, E. T. Henig, W. A. Kaysser, and G. Petzow:Modern Developments in Powder Metallurgy, H.H. Hausner, H. W. Antes, and G. D. Smith, eds., Metal Powder Industries Federation, Princeton, NJ, 1981, vol. 14, pp. 189–203.Google Scholar
  12. 12.
    D. Chaiat, L. Borukhin, and R. Gero:Proceedings Eleventh Interna- tional Plansee Seminar, H. Bildstein and H. M. Ortner, eds., Metall- werk Plansee, Reutte, Austria, 1985, vol. 2, pp. 113–29.Google Scholar
  13. 13.
    M.R. Eisenmann and R. M. German:Inter. J. Refract. Hard Met., 1984, vol. 3, pp. 86–91.Google Scholar
  14. 14.
    H. Hofman and G. Petzow:Modern Developments in Powder Metal- lurgy, E. Aqua and C.I. Whitman, eds., Metal Powder Industries Federation, Princeton, NJ, 1985, vol. 17, pp. 17–31.Google Scholar
  15. 15.
    B.C. Muddle and D. V. Edmonds:Metal Sci., 1983, vol. 17, pp. 209–18.CrossRefGoogle Scholar
  16. 16.
    E. C. Green, D.J. Jones, and W. R. Pitkin:Symposium on Powder Metallurgy, Special Report 58, Iron and Steel Institute, London, U.K., 1956, pp. 253–56.Google Scholar
  17. 17.
    H. K. Yoon, S.H. Lee, S.J. L. Kang, and D.N. Yoon:J. Mater. Sci., 1983, vol. 18, pp. 1374–80.CrossRefGoogle Scholar
  18. 18.
    R. M. German and J. E. Hanafee:Processing of Metal and Ceramic Powders, R.M. German and K.W. Lay, eds., The Metallurgical Society, Warrendale, PA, 1982, pp. 267–82.Google Scholar
  19. 19.
    W. E. Gurwell: “A Review of Embrittlement Mechanisms in Tungsten Heavy Alloys,” Report PNL-SA-13646, Pacific Northwest Laboratory, Richland, WA, April 1986.Google Scholar
  20. 20.
    L. Ekbom:Modern Developments in Powder Metallurgy, H. H. Hausner, H. W. Antes, and G. D. Smith, eds., Metal Powder Industries Federation, Princeton, NJ, 1981, vol. 14, pp. 177–88.Google Scholar
  21. 21.
    D. T. Eash, E. G. Zukas, and W. V. Green: "/ldSome Properties of Sev- eral High-Density Composites,/rd" Report LA-4981-MS, Los Alamos National Laboratory,Los Alamos, NM, July 1972.Google Scholar
  22. 22.
    R.H. Krock:Metals for the Space Age, F. Benesovsky, ed., Metall- werk Plansee, Reutte, Austria, 1965, pp. 256–75.Google Scholar
  23. 23.
    R.H. Krock and L.A. Shepard:Trans. TMS-AIME, 1963, vol. 227 pp. 1127–34.Google Scholar
  24. 24.
    R.L. Woodward, N.J. Baldwin, I. Burch, and B.J. Baxter:Metall. Trans. A, 1985, vol. 16A, pp. 2031–37.Google Scholar
  25. 25.
    L.F. Pease and V. C. Potter:Metals Handbook, 9th ed., ASM, Metals Park, OH, 1984, vol. 7, p. 476.Google Scholar
  26. 26.
    R.M. German, J. E. Hanafee, and S.L. DiGiallonardo:Metall. Trans. A, 1984, vol. 15A, pp. 121–28.Google Scholar
  27. 27.
    H. Ferguson:Met. Prog., 1986, vol. 130, no. 3, pp. 37–40.Google Scholar
  28. 28.
    C. C. Ge, X. I. Xia, and E. T. Henig:Proceedings PIM-82 in Europe, International Powder Metallurgy Conference, Florence, Italy, June 1982, Associazione Italiana di Metallurgia, Milano, Italy, 1982 pp. 709–14.Google Scholar
  29. 29.
    M. Yodogawa:Sintering —Theory and Practice, D. Kolar, S. Pejovnik, and M. M. Ristic, eds., Elsevier Scientific, Amsterdam, Netherlands, 1982, pp. 519–25.Google Scholar
  30. 30.
    J.M. Googin, W. L. Harper, A.C. Neeley, and L.R. Phillips: “Development of Ductile Tungsten Alloys,” Report Y-1364, Oak Ridge Y-12 Plant, Oak Ridge, TN, Aug. 1961.Google Scholar
  31. 31.
    B.H. Rabin: Ph.D. Thesis, Rensselaer Polytechnic Institute, Troy, NY, 1986.Google Scholar
  32. 32.
    C. Lea, B. C. Muddle, and D. V. Edmonds:Metall. Trans. A, 1983, vol. 14A, pp. 667–77.Google Scholar
  33. 33.
    J. B. Posthill, M.C. Hogwood, and D. V. Edmonds:Powder Met., 1986, vol. 29, pp. 45–51.Google Scholar
  34. 34.
    J.B. Lambert and R.E. Droegkamp:Metals Handbook, 9th ed., ASM, Metals Park, OH, 1984, vol. 7, p. 766.Google Scholar
  35. 35.
    S.W.H. Yih:Metals Handbook, 9th ed., ASM, Metals Park, OH, 1979, vol. 2, p. 816.Google Scholar
  36. 36.
    J.D. Whittenberger and M. V. Nathal:Metals Handbook, 9th ed., ASM, Metals Park, OH, 1985, vol. 8, pp. 34–37.Google Scholar
  37. 37.
    F. A. McClintock and A. S. Argon:Mechanical Behavior of Mate- rials, Addison Wesley, Reading, MA, 1966, pp. 190–94.Google Scholar
  38. 38.
    L. E. Malvern:Mechanical Properties at High Rates of Strain, 1984, J. Harding, ed., The Institute of Physics, London, U.K., 1984 pp. 1–20.Google Scholar

Copyright information

© The Metallurgical Society of AIME 1988

Authors and Affiliations

  • A. Bose
    • 1
  • D. Sims
    • 1
  • R. M. German
    • 1
  1. 1.Department of Materials EngineeringRensselaer Polytechnic InstituteTroy

Personalised recommendations