Advertisement

Cooling strategies for cryogenic machining from a materials viewpoint

  • Z. Zhao
  • S. Y. Hong
Shaping and Forming

Abstract

This article discusses the cooling strategies for cryogenic machining from a materials viewpoint. It is argued that, because different materials respond to temperature and machining processes differently, different cooling strategies are needed to improve the machinabilities of materials by cryogenic machining. In this work, five workpiece materials such as AISI1010 low-carbon steel, AISI1070 high-carbon steel, AISIE52100 bearing steel, titanium alloy Ti-6Al-4V, and cast aluminum alloy A390 were studied experimentally at various temperatures. Based on the experimental results of the cryogenic properties of the materials and their known machining characteristics, the cooling strategies for cryogenic machining of these materials were analyzed.

Keywords

Tool Wear Impact Strength Chip Formation Tool Material Cast Aluminum Alloy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Trigger and B.T. Chao,Trans. ASME, Vol 73, 1951, p 57–68.Google Scholar
  2. 2.
    N.N Zorev, inMetal Cutting Mechanics, Pergamon Press, Oxford, 1966, p 195–201.Google Scholar
  3. 3.
    J.E. Williams, E.F. Smart, and D.R. Milner,Metallurgia, Vol 81, 1970, p 3–10.Google Scholar
  4. 4.
    P.K. Wright and A. BstgchiJ. Applied Metalworking, Vol 1,198?, pl5.Google Scholar
  5. 5.
    J. Larsen-Base,Selection of MaterialsJor Service Environments: Source Book, ASM International, 1987, p 188–195.Google Scholar
  6. 6.
    E.M. Trent,Metal Cutting, Butterworths, London, 1977.CrossRefGoogle Scholar
  7. 7.
    H. Takeyama and R. Murata,Trans. ASME, J. Eng. Ind., Vol 85, 1963, p 33–38.CrossRefGoogle Scholar
  8. 8.
    K. Neailey,Metals and Materials, Feb 1988, p 93.Google Scholar
  9. 9.
    A.B. Sadat and J.A. Bailey,Experimental Mechanics, Mar 1987, p 80.Google Scholar
  10. 10.
    B.F. vonTurkovich,Ann. CIRP,Vol30, 1981,p533.CrossRefGoogle Scholar
  11. 11.
    E.M. Trent,Wear, Vol 128, 1988, p 65.CrossRefGoogle Scholar
  12. 12.
    R. Komanduri,High Productivity Machining: Materials and Process, V.K. Sarin, Ed., American Society for Metals, 1985, p 329.Google Scholar
  13. 13.
    R. Komanduri, D.G. Flom, and M. Lee,J. Eng. Ind., Vol 107, 1985, p 325.CrossRefGoogle Scholar
  14. 14.
    F.A. Monash,Metalworking Production, Oct 1960, p 83.Google Scholar
  15. 15.
    W. Dillon, R.J. De Angelis, W.Y. Lu, J.S. Gunasekera, and J.A. Deno,J. Mater. Shap. Technol, Vol 8, 1990, p 23.CrossRefGoogle Scholar
  16. 16.
    T. Araki, S. Yamamoto, and H. Nakajima,High Productivity Machining: Materials and Process, V.K. Sarin, Ed., American Society for Metals, 1985, p 131.Google Scholar
  17. 17.
    M. Masuko and J. Kumabe,Bull, of Japanese Society of Mechanical Engineering, Vol 2, 1959, p 487.CrossRefGoogle Scholar
  18. 18.
    W.B. Rice, R. Salmon, and A.G. Advani,Int. J. Mach. Tool Des. Res.,Vol6, 1966, p 143.CrossRefGoogle Scholar
  19. 19.
    K. Uehara and S. Kumagai,Ann. CIRP, Vol 17, 1969, p 409.Google Scholar
  20. 20.
    K. Uehara and S. Kumagai,Ann. CIRP, Vol 18, 1970, p 273.Google Scholar
  21. 21.
    N. Gane,Mech. Eng.Trans.Australia,ME3, 1978,p5.Google Scholar
  22. 22.
    C. Spaans, “The Fundamentals of Three-Dimensional Chip Curl, Chip Breaking and Chip Control,” Ph.D. thesis, TH Delft, 1971.Google Scholar
  23. 23.
    N.H. Cook, P. Jhaveri, and N. Nayak,Trans. ASME, Vol B85, 1963, p 184.Google Scholar
  24. 24.
    ASM Metals Reference Book, 2nd ed., American Society for Metals, 1983, p 184.Google Scholar
  25. 25.
    E.F. Smart and E.M. Trent,Int. J. Prod. Res., Vol 13, 1975, p265.CrossRefGoogle Scholar
  26. 26.
    J.L. Jorstad,Trans. Metall. Soc. AIME, Vol 242, 1968, p 1217.Google Scholar
  27. 27.
    J.L. Jorstad, Paper No. 800486, presented at SAE Congress and Exposition, Feb 1980.Google Scholar
  28. 28.
    E.M. Collings,The Physical Metallurgy of Titanium Alloys, American Society for Metals, 1983.Google Scholar
  29. 29.
    A.R. Machado and J. Wallbank,Proc. Inst. Mech. Eng., Vol 204, 1990, p 53.CrossRefGoogle Scholar
  30. 30.
    R. Komanduri and B.F. von Turkovich,Wear, Vol 69, 1981, p 179.CrossRefGoogle Scholar
  31. 31.
    M.J. Donachie, Jr.,Titanium: A Technical Guide, American Society for Metals, 1982, p 163.Google Scholar
  32. 32.
    W.S. Hollis,Int. J. Mach. Tool Res., Vol 1, 1961, p 59.CrossRefGoogle Scholar
  33. 33.
    R.S. Reed,Machinery, 1965, p 79.Google Scholar
  34. 34.
    E.H. Rennhack and N.D. Carlsted,Transition in Technology, 1974, p 467.Google Scholar
  35. 35.
    J.D. Christopher, Technical Paper No. MR90-249, SME, 1990.Google Scholar
  36. 36.
    X.Y. Xuan, “An Experimental Study of the Mechanics of Metal Cutting,” Ph.D. thesis, University of Kentucky, 1991.Google Scholar
  37. 37.
    P. D. Hartung and B. M. Kramer,Ann. CIRP, Vol 31, 1982, p 75.CrossRefGoogle Scholar

Copyright information

© ASM International 1992

Authors and Affiliations

  • Z. Zhao
    • 1
  • S. Y. Hong
    • 1
  1. 1.Department of Mechanical and Materials EngineeringWright State UniversityDayton

Personalised recommendations