Advertisement

Densification of titanium diboride by hot isostatic pressing and production of near-net-shape components

  • J. Besson
  • F. Valin
  • P. Lointier
  • M. Boncoeur
Processing

Abstract

Hot isostatic pressing (HIP) was applied to the production of titanium diboride (TiB2) parts. Cylinders were first produced to select the best starting powder (of two possible choices) and the processing conditions. Transverse strength, hardness, and toughness measurements were carried out on the densified products. Results were equivalent or better than data published in the literature, showing that HIP is an efficient method of processing ceramic powders. Constitutive equations representing the rheology of porous materials are presented and applied to the selected titanium diboride powder. Hot pressing and sinter forging tests were carried out to obtain the parameters of the constitutive equations. These equations were used in a finite-element program to simulate the forming of TiB2 crucibles by HIP. These parts were actually processed using graphite or titanium inserts to produce a hollow, cylindrical part with a closed end. Observed and calculated final shapes were compared, showing good agreement. In addition, the finite-element program allowed the calculation of residual stresses after processing, of eventual remaining porosity. It then became possible to optimize processing routes, can, and insert geometries.

Keywords

Performance Volume Final Shape Titanium Diboride Graphite Foil TiB2 Powder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Raj,J. Am. Ceram. Soc, Vol 65 (No. 3), 1982, p C46.CrossRefGoogle Scholar
  2. 2.
    K.R. Venkatachari and R. Raj,/.Am. Ceram. Soc, Vol 69 (No. 6), 1986, p 499–506.CrossRefGoogle Scholar
  3. 3.
    P.C. Panda, J. Lagraff, and R. Raj,Acta Metall., Vol 36 (No. 8), 1988, p 1929–1939.CrossRefGoogle Scholar
  4. 4.
    R.K. Bordia and G.W. Scherer,Ada Metall., Vol 36 (No. 9), 1988, p 2393–2397.CrossRefGoogle Scholar
  5. 5.
    R.K. Bordia and G.W. Scherer,Ada Metall., Vol 36 (No. 9), 1988, p 2399–2409.CrossRefGoogle Scholar
  6. 6.
    G.W. Scherer,J. Am. Ceram. Soc, Vol 60 (No. 5–6), 1977, p 236–239.CrossRefGoogle Scholar
  7. 7.
    R.M. McMeeking and L.T. Kuhn,Ada Metall. Mater., Vol 40 (No. 5), 1992, p 961–969.CrossRefGoogle Scholar
  8. 8.
    J.M. Duva and P.D. Crow,Ada Metall. Mater., Vol 40 (No. 1), 1992, p 31–35.CrossRefGoogle Scholar
  9. 9.
    A.L. Gurson,J. Eng. Mater. Technol, Trans. ASME, Vol 99, 1977, p 2–15.CrossRefGoogle Scholar
  10. 10.
    H.A. Kuhn and C.L. Downey,Int. J. Powder Metall., Vol 7 (No. 1), 1971, p 15–25.Google Scholar
  11. 11.
    M. Abouaf, J.L. Chenot, G. Raisson, and P. Bauduin,Int. J. Num. Meth. Eng., Vol 25 (No. 1), 1988, p 191–212.CrossRefGoogle Scholar
  12. 12.
    A. Nohara, T. Soh, and T. Nakagawa,Int. J. Num. Meth. Eng., Vol 25 (No. 1), 1988, p 213–225.CrossRefGoogle Scholar
  13. 13.
    S. Shima and M. Oyane,Int. J. Median. Sci., Vol 18,1976, p 285–291.Google Scholar
  14. 14.
    D. Bouvard and M. Lafer, inAdvances in Powder Metallurgy, Vol 1, Metal Powder Industries Federation, 1989, p 491–503.Google Scholar
  15. 15.
    J. Duszczyk,J. Mater. Shaping Technoi., Vol 9, 1991, p 103–115.CrossRefGoogle Scholar
  16. 16.
    J. Duszczyk and L. Kowalski,J. Mater. Shaping Technoi., Vol 8, 1990, p 225–237.CrossRefGoogle Scholar
  17. 17.
    J. Besson, M. Abouaf, F. Mazerolle, and P. Suquet, inCreep in Structures, M. Zyczkowski, Ed., 4th IUTAM Symp., Cracow, Poland, 10–14 Sept 1990, p 45–53.Google Scholar
  18. 18.
    J. Besson and M. Abouaf,J. Am. Ceram. Soc, 75(8), 1992, p 2165–2172.CrossRefGoogle Scholar
  19. 19.
    S. Shima and K. Mimura,Int. J. Mech.Sci., Vol 28 (No. 1), 1986, p 53–59.CrossRefGoogle Scholar
  20. 20.
    D.S. Wilkinson and M.F. Ashby,Ada Metall., Vol 23, 1975, p 1277–1285.CrossRefGoogle Scholar
  21. 21.
    A.S. Helle, K.E. Easterling, and M.F. Ashby,Ada Metall, Vol 33 (No. 12), 1985, p 2163–2174.CrossRefGoogle Scholar
  22. 22.
    W.G. Moffatt,The Handbook of Binary Phase Diagrams, General Electric Company, 1978.Google Scholar
  23. 23.
    H.R. Baumgartner and R.A. Steiger,J. Am. Ceram. Soc, Vol 67 (No. 3), 1984, p 207–212.CrossRefGoogle Scholar
  24. 24.
    P.F. Becher, C. F. Finch, and M.K. Ferber,J. Mater. Sci. Lett., Vol 5, 1986, p 195–197.CrossRefGoogle Scholar
  25. 25.
    C.B. Finch, P.F. Becher, P. Angelini, S. Baik, C.E. Bamberger, and J. Brynestad,Advanced Ceramic Mater., Vol 1, 1986, p 50–54.Google Scholar
  26. 26.
    R.C. Dorward,J. Mater. Sci. Lett., Vol 4,1985, p 694–696CrossRefGoogle Scholar
  27. 27.
    M.K. Ferber, P.F. Becher, and C.B. Finch,J.Am. Ceram. Soc, Vol 66, 1983,p C2-C3.CrossRefGoogle Scholar
  28. 28.
    H. Riedel, Fracture at High Temperature, inMaterials Research and Engineering, B. Ilschner and N.J. Grant, Ed., Springer-Verlag, 1986.Google Scholar
  29. 29.
    P. Chantikul, G.R. Anstis, B.R. Lawn, and D.B. Marshall,J. Am. Ceram. Soc, Vol 64 (No. 9), 1981, p 539–543.CrossRefGoogle Scholar
  30. 30.
    A.G. Evans and C.H. Hsueh,J. Am. Ceram. Soc, Vol 69 (No. 6), 1986, p 444–448.CrossRefGoogle Scholar
  31. 31.
    J. Besson and M. Abouaf,Ada Metall. Mater., Vol 39 (No. 10), 1991, p 2225–2234.CrossRefGoogle Scholar
  32. 32.
    L.T. Kuhn, R.M. McMeeking, and F.F. Lange, /.Am. Ceram. Soc, Vol 73 (No. 3), 1991, p 682–685.CrossRefGoogle Scholar
  33. 33.
    M.S. Koval’chenko and M.M. Mai,Sov. Powder Metall. Met. Ceramic, 1973, p 622–625.Google Scholar
  34. 34.
    M.S. Koval’chenko, L.F. Ochkas, and V.B. Vinokurov, /.Less-Common Met., Vol 67, 1979, p 297–301.CrossRefGoogle Scholar
  35. 35.
    E.V. Clougherty, R.L. Pober, and L. Kaufman, inModern Developments in Powder Metallurgy, Vol 2, H.H. Hausner, Ed., Plenum Press, 1965, p 321–329.Google Scholar
  36. 36.
    H.J. Frost and M.F. Ashby,Deformation Mechanisms Maps, Pergamon Press, Oxford.Google Scholar
  37. 37.
    M. Boncoeur and F. Valin,Brevet Francais, Vol 89, 1989, p 15479.Google Scholar
  38. 38.
    J. Besson and M. Abouaf,Int. J. Solids Structures, Vol 28 (No. 6), 1991, p 691–702.CrossRefGoogle Scholar
  39. 39.
    R.M. McMeeking,Int.J.Mech.Sci., Vol 34 (No. 1), 1992, p 53–62.CrossRefGoogle Scholar
  40. 40.
    J. Xu and R.M. McMeeking,Int. J. Mech. Sci., Vol 34 (No. 2), 1992, p 167–174.CrossRefGoogle Scholar
  41. 41.
    S. Langman, Wrought Titanium and Titanium Alloys,Metals Handbook, ASM International, Vol 2, 10th ed., 1990, p 592–633.Google Scholar
  42. 42.
    R. Hill,Mathematical Theory of Plasticity, Oxford University Press, 1950, p 106–114.Google Scholar

Copyright information

© ASM International 1992

Authors and Affiliations

  • J. Besson
    • 1
  • F. Valin
    • 2
  • P. Lointier
    • 2
  • M. Boncoeur
    • 2
  1. 1.Ecole Nationale Supérieure des Mines de ParisCentre des Matériaux P.M. Fourt, Ecole des Mines de ParisEvry CedexFrance
  2. 2.CEA/CEN SaclayYvette CedexFrance

Personalised recommendations