Advertisement

The uncertainty principle: A mathematical survey

  • Gerald B. Folland
  • Alladi Sitaram
Research Tutorial

Abstract

We survey various mathematical aspects of the uncertainty principle, including Heisenberg’s inequality and its variants, local uncertainty inequalities, logarithmic uncertainty inequalities, results relating to Wigner distributions, qualitative uncertainty principles, theorems on approximate concentration, and decompositions of phase space.

Math Subject Classifications

Primary 42-02, 42B10, 26D15 Secondary 43A25, 43A30, 81Q10, 81S30, 94A12, 94A17 

Keywords and Phrases

uncertainty principle Fourier transform Heisenberg’s inequality logarithmic inequalities Wigner distribution Landau-Pollak-Slepian theory phase space 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Ali, S. T. and Prugovecki, E. (1977). Systems of imprimitivity and representations of quantum mechanics in fuzzy phase space.J. Math. Phys. 18, 219–228. MR 58 #8964MATHMathSciNetCrossRefGoogle Scholar
  2. [2]
    Amrein, W. O. and Berthier, A.M. (1977). On support properties ofL pfunctions and their Fourier transforms.J. Funct. Anal. 24, 258–267. MR 57 #1013MATHMathSciNetCrossRefGoogle Scholar
  3. [3]
    Auscher, P. (1994). Remarks on the local Fourier bases.Wavelets: Mathematics and Applications (J. J. Benedetto and M. W. Frazier, eds.). CRC Press, Boca Raton, FL, 203–218. MR 94i:42039Google Scholar
  4. [4]
    Auscher, P., Weiss, G., and Wickerhauser, M. V. (1992). Local sine and cosine bases of Coifman and Meyer and the construction of smooth wavelets.Wavelets: A Tutorial in Theory and Applications (C. K. Chui, ed.). Academic Press, Boston, 237–256. MR 93e:42042Google Scholar
  5. [5]
    Barceló, J. A. and Córdoba, A. J. (1989). Band-limited functions:L pconvergence.Trans. Amer. Math. Soc. 313, 655–669. MR 90g:42017MATHMathSciNetCrossRefGoogle Scholar
  6. [6]
    Beckner, W. (1975). Inequalities in Fourier analysis.Ann. of Math. 102, 159–182. MR 52 #6317MathSciNetCrossRefGoogle Scholar
  7. [7]
    —————. (1995). Pitt’s inequality and the uncertainty principle.Proc. Amer. Math. Soc. 123, 1897–1905. MR 95g:42021MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Benedetto, J.J. (1985). An inequality associated to the uncertainty principle.Rend. Circ. Mat. Palermo (2)34, 407–421. MR 87g:26024MATHMathSciNetGoogle Scholar
  9. [9]
    —————. (1985). Fourier uniqueness criteria and spectrum estimation theorems.Fourier Techniques and Applications (J. F. Price, ed.). Plenum, New York, 149–170.Google Scholar
  10. [10]
    —————. (1990). Uncertainty principle inequalities and spectrum estimation.Recent Advances in Fourier Analysis and Its Applications (J. S. Byrnes and J. L. Byrnes, eds.). Kluwer Acad. Publ., Dordrecht. MR 91i:94010Google Scholar
  11. [11]
    —————. (1994). Frame decompositions, sampling, and uncertainty principle inequalities.Wavelets: Mathematics and Applications (J. J. Benedetto and M. W. Frazier, eds.). CRC Press, Boca Raton, FL, 247–304. MR 94i:94005Google Scholar
  12. [12]
    Benedetto, J. J. and Frazier, M. W. (eds.). (1994).Wavelets: Mathematics and Applications. CRC Press, Boca Raton, FL.MATHGoogle Scholar
  13. [13]
    Benedetto, J. J., Heil, C., and Walnut, D. (1992). Uncertainty principles for time-frequency operators.Continuous and Discrete Fourier Transforms, Extension Problems, and Wiener-Hopf Equations (I. Gohberg, ed.). Birkhäuser, Basel, 1–25. MR 94a:42041Google Scholar
  14. [14]
    Benedetto, J. J. and Walnut, D. F. (1994). Gabor frames forL 2 and related spaces.Wavelets: Mathematics and Applications (J. J. Benedetto and M. W. Frazier, eds.). CRC Press, Boca Raton, FL, 97–162. MR 94i:42040Google Scholar
  15. [15]
    Benedicks, M. (1984). The support of functions and distributions with a spectral gap.Math. Scand. 55, 255–309. MR 86f:43006MathSciNetGoogle Scholar
  16. [16]
    —————. (1985). On Fourier transforms of functions supported on sets of finite Lebesgue measure.J. Math. Anal. Appl. 106, 180–183. MR 86j:42017MATHMathSciNetCrossRefGoogle Scholar
  17. [17]
    Bialynicki-Birula, I. (1985). Entropic uncertainty relations in quantum mechanics.Quantum Probability and Applications III (L. Accardi and W. von Waldenfels, eds.).Lecture Notes in Math. 1136. Springer, Berlin, 90–103. MR 87b:81007CrossRefGoogle Scholar
  18. [18]
    Bialynicki-Birula, I. and Mycielski, J. (1975). Uncertainty relations for information entropy in wave mechanics.Comm. Math. Phys. 44, 129–132. MR 52 #7403MathSciNetCrossRefGoogle Scholar
  19. [19]
    Borchi, E. and Marsaglia, S. (1985). A note on the uncertainty product of bandlimited functions.Signal Process. 9, 277–282. MR 87a:94007MathSciNetCrossRefGoogle Scholar
  20. [20]
    Bourgain, J. (1988). A remark on the uncertainty principle for Hilbertian bases.J. Funct. Anal. 79, 136–143. MR 89f:81025MATHMathSciNetCrossRefGoogle Scholar
  21. [21]
    Bowie, P. C. (1971). Uncertainty inequalities for Hankel transforms.SIAM J. Math. Anal. 2, 601–606. MR 46 #4113MATHMathSciNetCrossRefGoogle Scholar
  22. [22]
    Busch, P. (1984). On joint lower bounds of position and momentum observables in quantum mechanics.J. Math. Phys. 25, 1794–1797. MR 85h:81004MathSciNetCrossRefGoogle Scholar
  23. [23]
    Byrnes, J. S. (1994). Quadrature mirror filters, low crest factor arrays, functions achieving optimal uncertainty principle bounds, and complete orthonormal sequences—a unified approach.Appl. Comput. Harmonic Anal. 1, 261–266. MR 95i:94004MATHMathSciNetCrossRefGoogle Scholar
  24. [24]
    Chistyakov, A. L. (1976). On uncertainty relations for vector-valued operators.Teoret. Mat. Fiz. 27, 130–134; English transl.,Theor. Math. Phys. 27, 380–382. MR 56 #7615MATHMathSciNetGoogle Scholar
  25. [25]
    Cowling, M. G. and Price, J. F. (1983). Generalisations of Heisenberg’s inequality.Harmonic Analysis (G. Mauceri, F. Ricci, and G. Weiss, eds.).Lecture Notes in Math. 992. Springer, Berlin, 443–449. MR 86g:42002bCrossRefGoogle Scholar
  26. [26]
    —————. (1984). Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality.SIAM J. Math. Anal. 15, 151–165. MR 86g:42002aMathSciNetCrossRefGoogle Scholar
  27. [27]
    Cowling, M. G., Price, J. F., and Sitaram, A. (1988). A qualitative uncertainty principle for semisimple Lie groups.J. Austral. Math. Soc. Ser. A 45, 127–132. MR 89d:43005MATHMathSciNetGoogle Scholar
  28. [28]
    Daubechies, I. (1992).Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia, PA. MR 93e:42045MATHGoogle Scholar
  29. [29]
    de Bruijn, N. G. (1967). Uncertainty principles in Fourier analysis.Inequalities (O. Shisha, ed.). Academic Press, New York, 55–71. MR 36 #3047Google Scholar
  30. [30]
    de Jeu, M. F. E. (1994). An uncertainty principle for integral operators.J. Funct. Anal. 122, 247–253. MR 95h:43009MATHMathSciNetCrossRefGoogle Scholar
  31. [31]
    Donoho, D. L. and Stark, P. B. (1989). Uncertainty principles and signal recovery.SIAM J. Appl. Math. 49, 906–931. MR 90c:42003MATHMathSciNetCrossRefGoogle Scholar
  32. [32]
    Dym, H. and McKean, H. P. (1972).Fourier Series and Integrals. Academic Press, New York. MR 56 #945MATHGoogle Scholar
  33. [33]
    Echterhoff, S., Kaniuth, E., and Kumar, A. (1991). A qualitative uncertainty principle for certain locally compact groups.Forum Math. 3, 355–369. MR 93a:43005MATHMathSciNetCrossRefGoogle Scholar
  34. [34]
    Faris, W. G. (1978). Inequalities and uncertainty principles.J. Math. Phys. 19, 461–466. MR 58 #4066MathSciNetCrossRefGoogle Scholar
  35. [35]
    Fefferman, C. (1983). The uncertainty principle.Bull. Amer. Math. Soc. (N.S.) 9, 129–206. MR 85f:35001MATHMathSciNetGoogle Scholar
  36. [36]
    Fefferman, C. and Phong, D. H. (1981). The uncertainty principle and sharp Garding inequalities.Comm. Pure Appl. Math. 34, 285–331. MR 82j:35140MATHMathSciNetCrossRefGoogle Scholar
  37. [37]
    Folland, G. B. (1989).Harmonic Analysis in Phase Space. Princeton University Press, Princeton, NJ. MR 92k:22017MATHGoogle Scholar
  38. [38]
    —————. (1995).A Course in Abstract Harmonic Analysis. CRC Press, Boca Raton, FL.MATHGoogle Scholar
  39. [39]
    Fuchs, W. H. J. (1954). On the magnitude of Fourier transforms.Proc. Intern. Congress Math. 1954, vol. II. North-Holland, Amsterdam.Google Scholar
  40. [40]
    Gabor, D. (1946). Theory of communication.J. Inst. Elec. Engr. 93, 429–457.Google Scholar
  41. [41]
    Garofalo, N. and Lanconelli, E. (1990). Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation.Ann. Inst. Fourier (Grenoble)40, 313–356. MR 91i:22014MATHMathSciNetGoogle Scholar
  42. [42]
    Gesztesy, F. and Pittner, L. (1978). Uncertainty relations and quadratic forms.J. Phys. A 11, 1765–1770. MR 81a:81028MathSciNetCrossRefGoogle Scholar
  43. [43]
    Grabowski, M. (1984). Wehrl-Lieb’s inequality for entropy and the uncertainty relation.Rep. Math. Phys. 20, 153–155. MR 86f:82008MATHMathSciNetCrossRefGoogle Scholar
  44. [44]
    Gross, L. (1975). Logarithmic Sobolev inequalities.Amer. J. Math. 97, 1061–1083. MR 54 #8263MathSciNetCrossRefGoogle Scholar
  45. [45]
    —————. (1978). Logarithmic Sobolev inequalities—a survey.Vector Space Measures and Applications I (R. M. Aron and S. Dineen, eds.).Lecture Notes in Math. 644. Springer, Berlin, 196–203. MR 80f:46035Google Scholar
  46. [46]
    Grünbaum, F. A. (1981). Eigenvectors of a Toeplitz matrix: discrete version of the prolate spheroidal wave functions.SIAM J. Alg. Disc. Methods 2, 136–141. MR 82m:15013MATHGoogle Scholar
  47. [47]
    Grünbaum, F. A., Longhi, L., and Perlstadt, M. (1982). Differential operators commuting with finite convolution integral operators: some nonabelian examples.SIAM J. Appl. Math. 42, 941–955. MR 84f:43013MATHMathSciNetCrossRefGoogle Scholar
  48. [48]
    Havin, V. and Jöricke, B. (1994).The Uncertainty Principle in Harmonic Analysis. Springer, Berlin. MR 96c:42001MATHGoogle Scholar
  49. [49]
    Hardy, G. H. (1933). A theorem concerning Fourier transforms.J. London Math. Soc. 8, 227–231.MATHCrossRefGoogle Scholar
  50. [50]
    Heinig, H. P. and Smith, M. (1986). Extensions of the Heisenberg-Weyl inequality.Internat. J. Math. Math. Sci. 9, 185–192. MR 87i:26013MATHMathSciNetCrossRefGoogle Scholar
  51. [51]
    Heisenberg, W. (1927). Über den anschaulichen Inhalt der quantentheoretischen Kinematic und Mechanik.Zeit. Physik 43, 172–198.CrossRefGoogle Scholar
  52. [52]
    Helffer, B. and Nourrigat, J. (1988). Remarques sur le principe d’incertitude.J. Funct. Anal. 80, 33–46. MR 90b:35254MATHMathSciNetCrossRefGoogle Scholar
  53. [53]
    Hilberg, W. and Rothe, F. G. (1971). The general uncertainty relation for real signals in communication theory.Inform. and Control 18, 103–125. MR 43 #4540MATHMathSciNetCrossRefGoogle Scholar
  54. [54]
    Hirschman, I. I. (1957). A note on entropy.Amer. J. Math. 79, 152–156. MR 19, 622iMATHMathSciNetCrossRefGoogle Scholar
  55. [55]
    Hogan, J. A. (1988). A qualitative uncertainty principle for locally compact Abelian groups.Miniconferences on Harmonic Analysis and Operator Algebras (Proc. Centre Math. Anal. 16; M. Cowling, C. Meaney, and W. Moran, eds.). Australian National University, Canberra, 133–142. MR 89k:43006Google Scholar
  56. [56]
    -----. (1989).Fourier Uncertainty on Groups. Ph.D. Dissertation, University of New South Wales.Google Scholar
  57. [57]
    Hogan, J. A. (1993). A qualitative uncertainty principle for unimodular groups of type I.Trans. Amer. Math. Soc. 340, 587–594. MR 94b:43003MATHMathSciNetCrossRefGoogle Scholar
  58. [58]
    Hörmander, L. (1991). A uniqueness theorem of Beurling for Fourier transform pairs,Ark. Mat. 29, 237–240. MR 93b:42016MATHMathSciNetCrossRefGoogle Scholar
  59. [59]
    Ishigaki, T. (1991). Four mathematical expressions of the uncertainty relation.Found. Phys. 21, 1089–1105. MR 92k:81012MathSciNetCrossRefGoogle Scholar
  60. [60]
    Kacnel’son, V. E. (1973). Equivalent norms in spaces of entire functions.Mat. Sb. 92, 34–54; English transl.,Math. USSR Sb.21, 33–55. MR 49 #3171MathSciNetGoogle Scholar
  61. [61]
    Kahane, J.-P., Lévy-Leblond, J.-M., and Sjöstrand, J. (1993). Une inegalité de Heisenberg inverse.J. Anal. Math. 60, 135–155. MR 95a:34124MATHMathSciNetGoogle Scholar
  62. [62]
    Kargaev, P. P. (1982/1983). The Fourier transform of the characteristic function of a set, vanishing on an interval.Mat. Sb. 117, 397–411; English transl.Math. USSR Sb.45, 397–410. MR 83f:42010MathSciNetGoogle Scholar
  63. [63]
    Kargaev, P. P and Volberg, A. L. (1992). Three results concerning the support of functions and their Fourier transforms.Indiana Univ. Math. J. 41, 1143–1164. MR 94d:42018MATHMathSciNetCrossRefGoogle Scholar
  64. [64]
    Kay, I. and Silverman, R. A. (1959). On the uncertainty relation for real signals: postscript.Inform. and Control 2, 396–397. MR 23 #B2091MathSciNetGoogle Scholar
  65. [65]
    Kempf, A. (1994). Uncertainty relation in quantum mechanics with quantum group symmetry.J. Math. Phys. 35, 4483–4496. MR 95k:81063MATHMathSciNetCrossRefGoogle Scholar
  66. [66]
    Kennard, E. H. (1927). Zur Quantenmechanik einfacher Bewegungstypen.Zeit. Physik 44, 326–352.CrossRefGoogle Scholar
  67. [67]
    Knapp, A. W. (1986).Representation Theory of Semisimple Groups. Princeton University Press, Princeton, NJ. MR 87j:22022MATHGoogle Scholar
  68. [68]
    Koppinen, M. (1994). Uncertainty inequalities for Hopf algebras.Comm. Algebra 22, 1083–1101. MR 95a:16051MATHMathSciNetGoogle Scholar
  69. [69]
    Kraus, K. (1967). A further remark on uncertainty relations.Zeit. Physik 201, 134–141. MR 35 #2570MathSciNetCrossRefGoogle Scholar
  70. [70]
    Kumar, A. (1992). A qualitative uncertainty principle for hypergroups.Functional Analysis and Operator Theory (B. S. Yadav and D. Singh, eds.).Lecture Notes in Math. 1511. Springer, Berlin, 1–9. MR 94a:43012CrossRefGoogle Scholar
  71. [71]
    Lahti, P. J. and Maczynski, M. J. (1987). Heisenberg inequality and the complex field in quantum mechanics.J. Math. Phys. 28, 1764–1769. MR 88g:81011MathSciNetCrossRefGoogle Scholar
  72. [72]
    Landau, H. J. (1985). An overview of time and frequency limiting.Fourier Techniques and Applications (J. F. Price, ed.). Plenum, New York, 201–220.Google Scholar
  73. [73]
    Landau, H. J. and Pollak, H. O. (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty II.Bell Syst. Tech. J. 40, 65–84. MR 25 #4147MathSciNetMATHGoogle Scholar
  74. [74]
    Landau, H. J. and Pollak, H. O. (1962). Prolate spheroidal wave functions, Fourier analysis and uncertainty III: the dimension of the space of essentially time- and band-limited signals.Bell Syst. Tech. J. 41, 1295–1336. MR 26 #5200MathSciNetMATHGoogle Scholar
  75. [75]
    Landau, H. J. and Widom, H. (1980). Eigenvalue distribution of time and frequency limiting.J. Math. Anal. Appl. 77, 469–481. MR 81m:45023MATHMathSciNetCrossRefGoogle Scholar
  76. [76]
    Leipnik, R. (1959). Entropy and the uncertainty principle.Inform. and Control 2, 64–79.MathSciNetCrossRefMATHGoogle Scholar
  77. [77]
    Lieb, E. H. (1978). Proof of an entropy conjecture of Wehrl.Comm. Math. Phys. 62, 35–41. MR 80d:82032MATHMathSciNetCrossRefGoogle Scholar
  78. [78]
    —————. (1990). Integral bounds for radar ambiguity functions and Wigner distributions.J. Math. Phys. 31, 591–599. MR 91f:81076MathSciNetCrossRefGoogle Scholar
  79. [79]
    Logvinenko, V. N. and Sereda, Ju. F. (1974). Equivalent norms in spaces of entire functions of exponential type.Teor. Funksii Funktsional. Anal. i Prilozhen. 20, 102–111. MR 57 #17232MATHMathSciNetGoogle Scholar
  80. [80]
    Matolcsi, T. and Szücs, J. (1973). Intersection des mesures spectrales conjuguées.C. R. Acad. Sci. Paris 277, A841-A843. MR 48 #4804Google Scholar
  81. [81]
    Melenk, J. M. and Zimmerman, G. (1996). Functions with time and frequency gaps.J. Fourier Anal. Appl. 2, 611–614.MATHMathSciNetCrossRefGoogle Scholar
  82. [82]
    Meshulam, R. (1992). An uncertainty principle for groups of orderpq.European J. Combin. 13, 401–407. MR 93e:20036MATHMathSciNetCrossRefGoogle Scholar
  83. [83]
    Mustard, D. (1991). Uncertainty principles invariant under the fractional Fourier transform.J. Austral. Math. Soc. Ser. B 33, 180–191. MR 93c:42007MATHMathSciNetGoogle Scholar
  84. [84]
    Nahmod, A. R. (1994). Generalized uncertainty principles on spaces of homogeneous type.J. Funct. Anal. 119, 171–209. MR 95g:42027MATHMathSciNetCrossRefGoogle Scholar
  85. [85]
    Narcowich, F. J. (1990). Geometry and uncertainty.J. Math. Phys. 31, 354–364. MR 91a:81088MATHMathSciNetCrossRefGoogle Scholar
  86. [86]
    Nazarov, F. L. (1993). Local estimates for exponential polynomials and their applications to inequalities of the uncertainty principle type.Algebra i Analiz 5, 3–66. MR 94k:42004Google Scholar
  87. [87]
    Nelson, E. (1959). Anlytic vectors.Ann. of Math. (2)70, 572–615. MR 21 #5901MathSciNetCrossRefGoogle Scholar
  88. [88]
    Pati, V., Sitaram, A., Sundari, M., and Thangavelu, S. (1996). An uncertainty principle for eigenfunction expansions.J. Fourier Anal. Appl. 2, 427–433.MATHMathSciNetCrossRefGoogle Scholar
  89. [89]
    Pearl, J. (1973). Time, frequency, sequency, and their uncertainty relations.IEEE Trans. Inform. Theory IT-19, 225–229. MR 54 #12344MathSciNetCrossRefGoogle Scholar
  90. [90]
    Perlstadt, M. (1986). Polynomial analogues of prolate spheroidal wave functions and uncertainty.SIAM J. Math. Anal. 17, 340–248. MR 87f:42026MathSciNetCrossRefGoogle Scholar
  91. [91]
    Price, J. F. (1983). Inequalities and local uncertainty principles.J. Math. Phys. 24, 1711–1714. MR 85e:81056MATHMathSciNetCrossRefGoogle Scholar
  92. [92]
    Price, J. F., (ed.). (1985).Fourier Techniques and Applications. Plenum, New York.MATHGoogle Scholar
  93. [93]
    Price, J. F. (1987). Sharp local uncertainty inequalities.Studia Math. 85, 37–45. MR 88f:42029MathSciNetGoogle Scholar
  94. [94]
    Price, J. F. and Racki, P. C. (1985). Local uncertainty inequalities for Fourier series.Proc. Amer. Math. Soc. 93, 245–251. MR 86e:42018MATHMathSciNetCrossRefGoogle Scholar
  95. [95]
    Price, J. F. and Sitaram, A. (1988). Functions and their Fourier transforms with supports of finite measure for certain locally compact groups.J. Funct. Anal. 79, 166–182. MR 90e:43003MATHMathSciNetCrossRefGoogle Scholar
  96. [96]
    ————— (1988). Local uncertainty inequalities for compact groups.Proc. Amer. Math. Soc. 103, 441–447. MR 89i:43004MATHMathSciNetCrossRefGoogle Scholar
  97. [97]
    ————— (1988). Local uncertainty inequalities for locally compact groups.Trans. Amer. Math. Soc. 308, 105–114. MR 89h:22017MATHMathSciNetCrossRefGoogle Scholar
  98. [98]
    Shahshahani, M. (1989). Poincaré inequality, uncertainty principle, and scattering theory on symmetric spaces.Amer. J. Math. 111, 197–224. MR 90g:22017MATHMathSciNetCrossRefGoogle Scholar
  99. [99]
    Shannon, C. (1948)/(1949). A mathematical theory of communication.Bell System Tech. J. 27, 379–423 and 623–656. Reprinted: Shannon, C. and Weaver, W.The Mathematical Theory of Communication. Univ. of Illinois Press, Urbana. MR 10, 133eMathSciNetMATHGoogle Scholar
  100. [100]
    Sitaram, A. and Sundari, M. An analogue of Hardy’s theorem for very rapidly decreasing functions on semi-simple Lie groups.Pacific J. Math. (to appear).Google Scholar
  101. [101]
    Sitaram, A., Sundari, M., and Thangavelu, S. (1995). Uncertainty principles on certain Lie groups.Proc. Indian Acad. Sci. Math. Sci. 105, 135–151.MATHMathSciNetGoogle Scholar
  102. [102]
    Skoog, R. A. (1970). An uncertainty principle for functions vanishing on a half-line.IEEE Trans. Circuit Theory CT-17, 241–243. MR 41 #8926MathSciNetGoogle Scholar
  103. [103]
    Slepian, D. (1964). Prolate spheroidal wave functions, Fourier analysis and uncertainty IV: extensions to many dimensions; generalized prolate spheroidal wave functions.Bell Syst. Tech. J. 43, 3009–3057. MR 31 #5993MathSciNetMATHGoogle Scholar
  104. [104]
    ————— (1976). On bandwidth.Proc. IEEE 64, 292–300. MR 57 #2738MathSciNetCrossRefGoogle Scholar
  105. [105]
    ————— (1978). Prolate spheroidal wave functions, Fourier analysis and uncertainty V: the discrete case.Bell Syst. Tech. J. 57, 1371–1430.Google Scholar
  106. [106]
    ————— (1983). Some comments on Fourier analysis, uncertainty and modeling.SIAM Rev. 25, 379–393. MR 84i:94016MATHMathSciNetCrossRefGoogle Scholar
  107. [107]
    Slepian, D. and Pollak, H. O. (1961). Prolate spheroidal wave functions, Fourier analysis and uncertainty I.Bell Syst. Tech. J. 40, 43–63. MR 25 #4146MathSciNetMATHGoogle Scholar
  108. [108]
    Smith, K. T. (1990). The uncertainty principle on groups.SIAM J. Appl. Math. 50, 876–882. MR 91i:94008MathSciNetCrossRefGoogle Scholar
  109. [109]
    Spera, M. (1993). On a generalized uncertainty principle, coherent states, and the moment map.J. Geom. Phys. 12, 165–182. MR 94m:58097MATHMathSciNetCrossRefGoogle Scholar
  110. [110]
    Strichartz, R. S. (1989). Uncertainty principles in harmonic analysis.J. Funct. Anal. 84, 97–114. MR 91a:42017MATHMathSciNetCrossRefGoogle Scholar
  111. [111]
    -----. (1994). Construction of orthonormal wavelets.Wavelets: Mathematics and Applications (J. J. Benedetto and M. W. Frazier, eds.). 23–50. MR 94i:42047Google Scholar
  112. [112]
    Sun, L. (1994). An uncertainty principle on hyperbolic space.Proc. Amer. Math. Soc. 121, 471–479. MR 94h:43005MATHMathSciNetCrossRefGoogle Scholar
  113. [113]
    Sundari, M. Hardy’s theorem for then-dimensional Euclidean motion group.Proc. Amer. Math. Soc. (to appear).Google Scholar
  114. [114]
    Thangavelu, S. (1990). Some uncertainty inequalities.Proc. Indian Acad. Sci. Math. Sci. 100, 137–145. MR 91h:43004MATHMathSciNetCrossRefGoogle Scholar
  115. [115]
    Uffink, J. B. M. and Hilgevoord, J. (1984). New bounds for the uncertainty principle.Phys. Lett. 105A, 176–178.Google Scholar
  116. [116]
    Uffink, J. B. M. and Hilgevoord, J. (1985). Uncertainty principle and uncertainty relations.Found. Phys. 15, 925–944. MR 87f:81012MathSciNetCrossRefGoogle Scholar
  117. [117]
    Voit, M. (1993). An uncertainty principle for commutative hypergroups and Gelfand pairs.Math. Nachr. 164, 187–195. MR 95d:43005MATHMathSciNetCrossRefGoogle Scholar
  118. [118]
    Weyl, H. (1928).Gruppentheorie und Quantenmechanik. S. Hirzel, Leipzig. Revised English edition:The Theory of Groups and Quantum Mechanics Methuen, London, 1931; reprinted by Dover, New York, 1950.MATHGoogle Scholar
  119. [119]
    Wiener, N. (1956).I Am a Mathematician. MIT Press, Cambridge.MATHGoogle Scholar
  120. [120]
    Williams, D. N. (1979). New mathematical proof of the uncertainty relation.Amer. J. Phys. 47, 606–607. MR 80d:81059MathSciNetCrossRefGoogle Scholar
  121. [121]
    Wolf, J. A. (1992). The uncertainty principle for Gelfand pairs.Nova J. Algebra Geom. 1, 383–396. MR 94k:43006MATHMathSciNetGoogle Scholar

Copyright information

© CRC Press, Inc 1997

Authors and Affiliations

  • Gerald B. Folland
    • 1
  • Alladi Sitaram
    • 2
  1. 1.Department of MathematicsUniversity of WashingtonSeattle
  2. 2.Statistics and Mathematics DivisionIndian Statistical Institute, R. V. College Post OfficeBangaloreIndia

Personalised recommendations