Metallurgical and Materials Transactions A

, Volume 26, Issue 4, pp 859–871 | Cite as

Novel oxide-dispersion-strengthened copper alloys from rapidly solidified precursors: Part 1. Microstructural development

  • Michael S. Nagorka
  • Carlos G. Levi
  • Glenn E. Lucas


ZrO2, Y2O3, and rare earth oxides with related structures are attractive candidates for dispersion strengthening of copper alloys but pose significant processing challenges owing to the low solubility of the oxide-forming elements in Cu. It is shown that the problems may be circumvented by a synthesis approach coupling rapid solidification and internal oxidation, followed by standard powder metallurgy consolidation. Cu-Zr and Cu-Y alloys were melt spun into ribbons ∼-50-to 150-Μm thick and internally oxidized at 1023 to 1223 K to yield ∼1 vol pct of ZrO2 or Y2O3 particles ranging in size from 5 nm up to ∼3150 nm. The coarser oxides result from direct oxidation of the intermetallic segregate, whereas the finer ones are generated by a dissolution-reprecipitation process. The relative proportions of fine and coarse oxides and the homogeneity of the distribution are related to segregation scale in the melt-spun ribbon and the relative permeabilities of oxygen and the oxidizable element in the alloy, which depend on the internal oxidation temperature. The oxide dispersoids were mostly cubic zirconia or cubic yttria and exhibited predominantly cube-on-cube orientation relationships with the matrix. Analysis of particle shapes revealed that the dominant interfaces are of the type {001}OX ∥ {001}Cu and {1¯11}OX ∥ {1¯11}Cu and could be explained by image charge interaction concepts. Extrusion produced an elongated grain structure but no significant changes in the oxide distribution.


Material Transaction Orientation Relationship Mushy Zone Internal Oxidation Intermetallic Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.V. Nadkarni, E. Klar, and W.M. Shafer:Met. Eng. Q., 1976, pp. 10–15.Google Scholar
  2. 2.
    A.V. Nadkarni: inHigh Conductivity Copper and Aluminum Alloys, E. Ling and P.W. Taubenblat, eds., TMS-AIME, Warrendale, PA, 1984, pp. 77–101.Google Scholar
  3. 3.
    N.J. Grant, A. Lee, and M. Lou: inHigh Conductivity Copper and Aluminum Alloys, E. Ling and P.W. Taubenblat, eds., TMS-AIME, Warrendale, PA, 1984, pp. 103–17.Google Scholar
  4. 4.
    J.L. Meijering and M.J. Druyvesteyn:Phil. Res. Rep., 1947, vol. 2, pp. 260–80.Google Scholar
  5. 5.
    N. Komatsu and N.J. Grant:Trans. TMS-AIME, 1962, vol. 224, pp. 705–13.Google Scholar
  6. 6.
    J.H. Swisher and E.O. Fuchs:Trans. TMS-AIME, 1969, vol. 245, pp. 1789–94.Google Scholar
  7. 7.
    J.H. Swisher and E.O. Fuchs:J. Inst. Met., 1970, vol. 98, pp. 129–33.Google Scholar
  8. 8.
    W. Scheithauer, Jr., R.F. Cheney, and N.E. Kopatz: inModern Developments in Powder Metallurgy, H.H. Hausner, ed., Plenum Press, New York, NY, 1971, vol. 5, pp. 149–58.Google Scholar
  9. 9.
    H. Schreiner and H. Ohmann: inModern Developments in Powder Metallurgy, H.H. Hausner, ed., Plenum Press, New York, NY, 1971, pp. 125–36.Google Scholar
  10. 10.
    R.S.W. Shewfelt and L.M. Brown:Phil. Mag., 1974, vol. 30, p. 1135.CrossRefGoogle Scholar
  11. 11.
    J. Rösier and E. Arzt:Acta Metall. Mater., 1990, vol. 38, pp. 671–83.CrossRefGoogle Scholar
  12. 12.
    M.S. Nagorka, C.G. Levi, G.E. Lucas, and S.D. Ridder:Mater. Sci. Eng., 1991, vol. A142, pp. 277–89.Google Scholar
  13. 13.
    M.S. Nagorka, G.E. Lucas, and C.G. Levi:Metall. Mater. Trans. A, 1995, vol. 26A, pp. 873–81.Google Scholar
  14. 14.
    F.N. Rhines, W.A. Johnson, and W.A. Anderson:Trans. TMS-AIME, 1942, vol. 147, pp. 205–21.Google Scholar
  15. 15.
    D. Arias and J.P. Abriata: inBinary Alloy Phase Diagrams, T.B. Massalski, ed., ASM INTERNATIONAL, Metals Park, OH, 1990, p. 1511.Google Scholar
  16. 16.
    D.J. Chakrabarti and D.E. Laughlin:Bull. Alloy Phase Diagrams, 1981, vol. 2 (3), pp. 315–19.Google Scholar
  17. 17.
    K.A. Jackson, J.D. Hunt, D.R. Uhlman, and T.P. Seward III:Trans. TMS-AIME, 1966, vol. 236, p. 149.Google Scholar
  18. 18.
    S.C. Flood and J.D. Hunt:J. Cryst. Growth, 1987, vol. 82, pp. 552–60.CrossRefGoogle Scholar
  19. 19.
    M. Rappaz and Ch.-A. Gandin:Acta Metall. Mater., 1993, vol. 41 (2), pp. 345–60.CrossRefGoogle Scholar
  20. 20.
    R.L. Pastorek and R.A. Rapp:Trans. TMS-AIME, 1969, vol. 245, pp. 1711–20.Google Scholar
  21. 21.
    H.S. Carslaw and J.C. Jaeger:Conduction of Heat in Solids, 2nd ed., Oxford University Press, Oxford, United Kingdom, 1959, p. 200.Google Scholar
  22. 22.
    J.H. Swisher: inOxidation in Metals and Alloys, ASM, Metals Park, OH, 1970, pp. 235–67.Google Scholar
  23. 23.
    V. Lanteri, A.H. Heuer, and T.E. Mitchell: inScience and Technology of Zirconia II, N. Claussen, M. Rühle, and A. Heuer, eds., American Ceramics Society, Columbus, OH, 1984, pp. 118–30.Google Scholar
  24. 24.
    F. Ernst:MRS Symp. Proc, 1990, vol. 183, pp. 49–54.Google Scholar
  25. 25.
    F. Ernst, P. Pirouz, and A.H. Heuer:Phil. Mag. A, 1991, vol. 63, pp. 259–77.CrossRefGoogle Scholar
  26. 26.
    H.J. Fecht and H. Gleiter:Acta Metall., 1985, vol. 33, pp. 557–62.CrossRefGoogle Scholar
  27. 27.
    D.M. Williams and G.C. Smith: inOxide Dispersion Strengthening, G.S. Ansell, T.D. Cooper, and F.V. Lenel, eds., Gordon and Breach, New York, NY, 1968, pp. 509–36.Google Scholar
  28. 28.
    G. Necker and W. Mader:Phil. Mag. Lett., 1988, vol. 58, pp. 205–12.CrossRefGoogle Scholar
  29. 29.
    Y. Gao and K.L. Merkle:J. Mater. Res., 1990, vol. 5, pp. 1995–2003.Google Scholar
  30. 30.
    T. Muschik: inMetal/Ceramic Interfaces In Internally Oxidized Pd-Al Alloys, Internal Report, Materials Department, University of California, Santa Barbara, CA, 1990.Google Scholar
  31. 31.
    A.M. Stoneham and P.W. Tasker:J. Phys., 1988, vol. C5, pp. 99–113.Google Scholar
  32. 32.
    V. Jayaram, M. De Graef, and C.G. Levi:Acta Metall. Mater., 1994, vol. 42 (6), pp. 1829–46.CrossRefGoogle Scholar
  33. 33.
    J.P. A. Löfvander and C.G. Levi: University of California, Santa Barbara, CA, unpublished research, 1993.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1995

Authors and Affiliations

  • Michael S. Nagorka
    • 1
  • Carlos G. Levi
    • 2
  • Glenn E. Lucas
    • 2
  1. 1.Kaiser Aluminum and Chemical CorporationPleasanton
  2. 2.High Performance Composites Center, Materials Department, College of EngineeringUniversity of California at Santa BarbaraSanta Barbara

Personalised recommendations