Advertisement

Metallurgical and Materials Transactions A

, Volume 26, Issue 4, pp 765–776 | Cite as

The kinetics of the internal nitriding of Fe-2 at. pct Al alloy

  • M. H. Biglari
  • C. M. Brakman
  • E. J. Mittemeijer
  • S. Van Der Zwaag
Article

Abstract

The kinetics of the precipitation of aluminum nitride on internal nitriding the Fe-2 at. pct Al alloy was investigated for cold-rolled and recrystallized specimens exhibiting “ideally weak” interaction behavior of the solutes Al and N. The kinetic analysis was performed using mass-increase data obtained for thin foils (thickness ⪯0.1 mm) upon nitriding in a NH3/H2 gas mixture at temperatures in the range 803 to 853 K. Activation-energy analysis revealed that precipitation of AlN in the recrystallized specimens is associated with a Gibbs free energy barrier for the formation of a precipitate of critical size; the precipitation rate is controlled by both nucleation and growth. On the other hand, precipitation of AlN in the cold-rolled specimens occurs without a Gibbs free energy barrier for formation of a precipitate of critical size; the precipitation rate is controlled by growth with kinetics governed by volume diffusion of alu-minum. Analysis of the total Gibbs free energy of formation of AlN in the α-Fe matrix showed that in the case of the recrystallized specimens, the formation of incoherent AlN precipitates with a hexagonal crystal structure is favored. In the case of the cold-rolled specimens, containing a high dislocation density, the formation of coherent AlN precipitates with cubic crystal structure is favored, at least in the beginning of precipitation.

Keywords

Gibbs Free Energy Material Transaction Gibbs Free Energy Change Nitriding Time Internal Nitriding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E.J. Mittemeijer: inCase-Hardened Steels: Microstructural and Residual Stress Effects, D.E. Diesburg, ed., TMS-AIME, Warrendale, PA, 1984, p. 161;HÄrterei-Technol. Mitt., 1984, vol. 39, p. 16.Google Scholar
  2. 2.
    K. Bohnenkamp:Arch. Eisenhüttenwes., 1967, vol. 38, p. 433.Google Scholar
  3. 3.
    H.H. Podgurski and H.E. Knechtel:Trans. AIME, 1969, vol. 245, p. 1595.Google Scholar
  4. 4.
    H.H. Podgurski, R.A. Oriani, and F.N. Davis:Trans. AIME, 1969, vol. 245, p. 1603.Google Scholar
  5. 5.
    M.H. Biglari, C.M. Brakman, M.A.J. Somers, W.G. Sloof, and E.J. Mittemeijer:Z. Metallkd., 1993, vol. 84, p. 124.Google Scholar
  6. 6.
    E.T. Turkdogan and S. Ignatowicz:J. Iron Steel Inst., 1958, vol. 188, p. 242.Google Scholar
  7. 7.
    B.J. Lightfoot and D.H. Jack:Proc. Heat Treatment, The Metals Society, London, 1973, p. 59.Google Scholar
  8. 8.
    J.R. Atanasova:HÄrterei-Technol. Mitt., 1976, vol. 31, p. 325.Google Scholar
  9. 9.
    R.E.E. Pulkkinen:Met. Sci., 1982, vol. 16, p. 37.CrossRefGoogle Scholar
  10. 10.
    R.E.E. Pulkkinen:Scan. J. Metall., 1983, vol. 12, p. 87.Google Scholar
  11. 11.
    P.M. Hekker, H.C.F. Rozendaal, and E.J. Mittemeijer:J. Mater. Sci., 1985, vol. 20, p. 718.CrossRefGoogle Scholar
  12. 12.
    P.C. van Wiggen, H.C.F. Rozendaal, and E.J. Mittemeijer:J. Mater. Sci., 1985, vol. 20, p. 4561.CrossRefGoogle Scholar
  13. 13.
    K. Kawamura:J. Jpn. Inst. Met., 1960, vol. 24, p. 710.Google Scholar
  14. 14.
    M.A.J. Somers, N.M. van der Pers, D. Schalkoord, and E.J. Mittemeijer:Metall. Trans. A, 1989, vol. 20A, pp. 1533–39.Google Scholar
  15. 15.
    J.W. Christian:The Theory of Transformations in Metals and Alloys, 2nd ed. Pergamon Press, Oxford, 1975.Google Scholar
  16. 16.
    M.H. Biglari, C.M. Brakman, E.J. Mittemeijer, and S. van der Zwaag: Delft University of Technology, unpublished research, 1994.Google Scholar
  17. 17.
    E.J. Mittemeijer:J. Mater. Sci., 1992, vol. 27, p. 3977.CrossRefGoogle Scholar
  18. 18.
    W.H. Press, B.P. Flannery, S.A. Teukolsky, and W.T. Vetterling:Numerical Recipes, Cambridge University Press, New York, NY, 1987, p. 289.Google Scholar
  19. 19.
    R.M. Lankreijer, M.A.J. Somers, and E.J. Mittemeijer:Proc. Int. Conf. on High Nitrogen Steels, Lille, May 18–20, 1988, J. Foct and A. Hendry, eds., The Institute of Metals, London, 1989, p. 108.Google Scholar
  20. 20.
    R. Gomez-Ramirez: Ph.D. Thesis, Stanford University, Stanford, CA, 1971.Google Scholar
  21. 21.
    R. Gomez-Ramirez and G.M. Pound:Metall. Trans. A, 1973, vol. 4A, pp. 1563–70.Google Scholar
  22. 22.
    M. Gemmaz, M. Afyouni, and A. Mosser:Surf. Sci. Lett., 1990, vol. 227, p. L109.CrossRefGoogle Scholar
  23. 23.
    G.A. Jeffrey and V.Y. Wu:Acta Crystallogr., 1963, vol. 16, p. 559.CrossRefGoogle Scholar
  24. 24.
    S. Hanai, N. Takemoto, and Y. Mizuyama:Trans. Iron Steel Inst. Jpn., 1971, vol. 11, p. 24.Google Scholar
  25. 25.
    T. Utigard:Z. Metallkd., 1993, vol. 84, p. 792.Google Scholar
  26. 26.
    D.A. Porter and K.E. Easterling:Phase Transformation in Metals and Alloys, Van Nostrand Reinhold, London, 1989.Google Scholar
  27. 27.
    F.C. Larche: inDislocations in Solids, F.R.N. Nabarro, ed., North-Holland Publishing Co., Amsterdam, 1979, p. 135.Google Scholar
  28. 28.
    J.W. Cahn:Acta Metall., 1957, vol. 5, p. 169.CrossRefGoogle Scholar
  29. 29.
    B.Ya. Lyubov and V.A. Solov’Yev:Fiz. Metal. Metalloved., 1965, vol. 19, p. 333.Google Scholar
  30. 30.
    C.C. Dollins:Acta Metall., 1970, vol. 18, p. 1209.CrossRefGoogle Scholar
  31. 31.
    L. Katgerman and J. Van Liere:Acta Metall., 1978, vol. 26, p. 361.CrossRefGoogle Scholar
  32. 32.
    J.P. Hirth and J. Lothe:Theory of Dislocations, MacGraw-Hill, New York, NY, 1968, p. 63.Google Scholar
  33. 33.
    C.J. Smithells:Metals Reference Book, 5th ed., Butterworths, London, 1976.Google Scholar
  34. 34.
    M.H. Biglari, C.M. Brakman, E.J. Mittemeijer, and S. van der Zwaag: Delft University of Technology, unpublished research, 1994.Google Scholar
  35. 35.
    E.J. Mittemeijer and J.T. Slycke:HÄrterei-Technol. Mitt., in press.Google Scholar
  36. 36.
    I. Barin:Thermochemical Data of Pure Substances, Cambridge University Press, New York, NY, 1989.Google Scholar
  37. 37.
    R. Hultgren, P.D. Desai, D.T. Hawkins, M. Gleiser, and K.K. Kelley:Selected Values of the Thermodynamic Properties of Binary Alloys, ASM Metals Park, OH, 1973, p. 162.Google Scholar
  38. 38.
    F.R.N. Nabarro:Proc. R. Soc., 175, vol. A, 1940, p. 519.CrossRefGoogle Scholar
  39. 39.
    M.E. Sherwin and T.J. Drummond:J. Appl. Phys., 1991, vol. 69, p. 8423.CrossRefGoogle Scholar
  40. 40.
    J.F. Nye:Physical Properties of Crystals, Oxford University Press, Oxford, 1989, p. 140.Google Scholar
  41. 41.
    W.B. Pearson:A Handbook of Lattice Spacings and Structure of Metals, Pergamon Press, London, 1968, vol. II.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1995

Authors and Affiliations

  • M. H. Biglari
    • 1
  • C. M. Brakman
    • 1
  • E. J. Mittemeijer
    • 1
  • S. Van Der Zwaag
    • 1
  1. 1.Laboratory of Materials ScienceDelft University of TechnologyAL, DelftThe Netherlands

Personalised recommendations