Oxygen stoichiometry and surface treatment effect on electromigration stability of high-Tc Tl2Ba2CuO6+x superconductor

  • V. V. Dyakin
  • V.S Yefanov
  • M. A. Tanatar
  • A. I. Akimov
  • A. P. Chernyakova
Materials Characterization


Electromigration stability of Tl2Ba2CuO6+x ceramics is shown to decrease significantly when the material is treated in water vapor atmosphere. TheTc decrease in these samples is accompanied by a resistance increase, while the Seebeck coefficient,S, remains unchanged. The authors conclude that the main effect comes from grain-boundary degradation under the water vapor treatment. For initial samples, electromigration stability strongly depends on the sample oxygen doping level and increases for materials with higher oxygen content. The effect is assumed to be due to the filling of interstitials in Tl-O layers by oxygen atoms.


electromigration high-temperature superconductors stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Ono, S. Takenouchi, and Y. Ishizawa,Jpn. J. Appl. Phys., Vol 30, 1991, p L464-L467CrossRefGoogle Scholar
  2. 2.
    K.D. Vernon-Parry, L.T. Romano, J.S. Lees, and C. R. M. Grovenor,Physica, Vol C170 (No. 1), 1990, p 388–394CrossRefGoogle Scholar
  3. 3.
    K.C. Rajan, P. Parameswaran, J. Janaki, G.V.N. Rao, and T. S. Radhakrishna,Bull. Electrochem., Vol 5 (No. 10), 1989, p 761–763Google Scholar
  4. 4.
    A.M. Prokhorov, Yu.M. Gufan, A.Ye. Krapivka, Ye.N. Lubnin, G.N. Mikhailova, Ye.G. Rudashevskii, A.S. Seferov, V.N. Sumarokov, V.A. Tarasenkov, and A.G. Chistov,J. Exp. Theoret. Phys. Lett., Vol 51 (No. 2), 1990, p 132–134Google Scholar
  5. 5.
    A.V. Mitin, N.E. Alekseevski, and E.P. Khlybov,Physica, Vol C199 (No. 2), 1992, p 351–355CrossRefGoogle Scholar
  6. 6.
    P.S. Ho and T. Kwok,Rep. Prog. Phys., Vol 52 (No. 3), 1989, p 301–348CrossRefGoogle Scholar
  7. 7.
    J.B. Parise, C.C. Torardi, M.A. Subramanian, J. Gopalakrishnan, A.W. Sleight, and E. Prince,Physica, Vol C159, 1989, p 239–244CrossRefGoogle Scholar
  8. 8.
    M.A. Tanatar, V.V. Dyakin, V.S. Yefanov, A.I. Akimov, and A. P. Chernyakova,Physica, Vol C185-189 (Part 2), 1991, p 1247–1248CrossRefGoogle Scholar
  9. 9.
    J.B. Boyce and B.A. Huberman,Phys. Rep., Vol 51 (No. 4), 1979, p 189–200CrossRefGoogle Scholar
  10. 10.
    A.I. Akimov, B.B. Boiko, V.I. Gatalskaya, S.E. Dem’yanov, A. L. Karpey, L.A. Kuruchkin, Yu.N. Leontovitch, L.P. Poluchankina, Ye.K. Stribuk, I.M. Starchenko, L.Z. Avdeev, O.V. Snigirev, S. V. Bogachev, M. M. Gaidukov, and A.M. Klushin,Superconductivity Phys. Chem. Technol., Vol 2 (No. 1), 1989, p 41–48 (in Russian)Google Scholar
  11. 11.
    P.M. Chaikin and J.F. Kwak,Rev. Sci. Instrum., Vol 46 (No. 2), 1975, p 218–223CrossRefGoogle Scholar
  12. 12.
    R.P Huebener,Phys. Rev., Vol 135 (No. 5A), 1964, p A1281-A1284CrossRefGoogle Scholar
  13. 13.
    V.A. Bondarenko, K.I. Pokhodnia, Yu.V. Sushko, and M. A. Tanatar,Synthetic Met., Vol 41-43, 1991, p 2221–2224CrossRefGoogle Scholar

Copyright information

© ASM International 1995

Authors and Affiliations

  • V. V. Dyakin
    • 1
  • V.S Yefanov
    • 1
  • M. A. Tanatar
    • 1
  • A. I. Akimov
    • 2
  • A. P. Chernyakova
    • 2
  1. 1.Institute of Surface ChemistryUkrainian Academy of SciencesKievUkraine
  2. 2.Institute of Solid State and Semiconductor PhysicsBelorussian Academy of SciencesMinskBelarus

Personalised recommendations