Advertisement

Metallurgical and Materials Transactions A

, Volume 27, Issue 3, pp 695–705 | Cite as

Prediction of grain structures in various solidification processes

  • M. Rappaz
  • Ch A. Gandin
  • J. L. Desbiolles
  • Ph. Thévoz
Article

Abstract

Grain structure formation during solidification can be simulatedvia the use of stochastic models providing the physical mechanisms of nucleation and dendrite growth are accounted for. With this goal in mind, a physically based cellular automaton (CA) model has been coupled with finite element (FE) heat flow computations and implemented into the code3- MOS. The CA enmeshment of the solidifying domain with small square cells is first generated automatically from the FE mesh. Within each time-step, the variation of enthalpy at each node of the FE mesh is calculated using an implicit scheme and a Newton-type linearization method. After interpolation of the explicit temperature and of the enthalpy variation at the cell location, the nucleation and growth of grains are simulated using the CA algorithm. This algorithm accounts for the heterogeneous nucleation in the bulk and at the surface of the ingot, for the growth and preferential growth directions of the dendrites, and for microsegregation. The variations of volume fraction of solid at the cell location are then summed up at the FE nodes in order to find the new temperatures. This CAFE model, which allows the prediction and the visualization of grain structures during and after solidification, is applied to various solidification processes: the investment casting of turbine blades, the continuous casting of rods, and the laser remelting or welding of plates. Because the CAFE model is yet two-dimensional (2-D), the simulation results are compared in a qualitative way with experimental findings.

Keywords

Material Transaction Cellular Automaton Turbine Blade Fusion Zone Molten Pool 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Chalmers:Principles of Solidification, John Wiley and Sons, New York, NY, 1964.Google Scholar
  2. 2.
    W. Kurz and D.J. Fisher:Fundamentals of Solidification, Trans Tech Publications, Aedermannsdorf, Switzerland, 1989.Google Scholar
  3. 3.
    M. McLean:Directionally Solidified Materials for High Temperature Service, The Metals Society, London, 1983.Google Scholar
  4. 4.
    S.C. Huang and M.E. Glicksman:Acta Metall, 1981, vol. 29, pp. 701–15 and 717-34.CrossRefGoogle Scholar
  5. 5.
    K. Somboonsuk, J.T. Mason, and R. Trivedi:Metall. Trans., 1984, vol. 15A, pp. 967–75.Google Scholar
  6. 6.
    H. Esaka and W. Kurz:J. Cryst. Growth, 1985, vol. 72, pp. 578–84.CrossRefGoogle Scholar
  7. 7.
    F. Staub, B. Walser, and J. Wortmann:Rev. Tech. Sulzer, 1988, vol. 3, pp. 11–16.Google Scholar
  8. 8.
    M. Rappaz:Int. Mater. Rev. 1989, vol. 34, pp. 93–123.Google Scholar
  9. 9.
    S.G.R. Brown and J.A. Spittle:Mater. Sci. Technol, 1989, vol. 5, pp. 362–68.Google Scholar
  10. 10.
    J.A. Spittle and S.G.R. Brown:Acta. Metall., 1989, vol. 37, pp. 1803- 10.CrossRefGoogle Scholar
  11. 11.
    M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S. Sahni:Acta Metall, 1984, vol. 32, pp. 783–91.CrossRefGoogle Scholar
  12. 12.
    P. Zhu and W. Smith:Acta Metall., 1992, vol. 40, pp. 683–92.CrossRefGoogle Scholar
  13. 13.
    P. Zhu and W. Smith:Acta Metall., 1992, vol. 40, pp. 3369–79.CrossRefGoogle Scholar
  14. 14.
    M. Rappaz and Ch.-A. Gandin:MRS Bull, 1994, vol. XIX, pp. 20- 24.Google Scholar
  15. 15.
    Ch. Charbon and M. Rappaz:Model. Simul. Mater. Sci. Eng., 1993, vol. 1, pp. 455–66.CrossRefGoogle Scholar
  16. 16.
    Ch. Charbon, A. Jacot, and M. Rappaz:Acta Metall., 1994, vol. 42, pp. 3953–66.CrossRefGoogle Scholar
  17. 17.
    M. Rappaz, Ch. Charbon, and R. Sasikumar:Acta Metall., 1994, vol. 42, pp. 2365–74.CrossRefGoogle Scholar
  18. 18.
    M. Rappaz and Ch.-A. Gandin:Acta Metall., 1993, vol. 41, pp. 345- 60.CrossRefGoogle Scholar
  19. 19.
    Ch.-A. Gandin, M. Rappaz, and R. Tintillier:Metall. Trans. A, 1993, vol. 24A, pp. 467–79.Google Scholar
  20. 20.
    Ch.-A. Gandin, M. Rappaz, and R. Tintillier:Metall. Trans. A, 1994, vol. 25A, pp. 629–35.Google Scholar
  21. 21.
    Ch.-A. Gandin, M. Rappaz, D. West, and B.L. Actams:Metall. Trans. A, 1995, vol. 26A, pp. 1543–51.CrossRefGoogle Scholar
  22. 22.
    Ch.-A. Gandin and M. Rappaz:Acta Metall., 1994, vol. 42, pp. 2233- 46.CrossRefGoogle Scholar
  23. 23.
    Ph. Thévoz, M. Rappaz, and J.-L. Desbiolles: inLight Metals, Ch.M. Bickert, ed., TMS, Warrendale, PA, 1990, pp. 975–84.Google Scholar
  24. 24.
    W.B. Dress, T. Zacharia, and B. Radhakrishnan: Conference proceeding,Modeling and Control of Joining Processes, Ed. T. Zacharia, AWS/ORNL, 1993, pp. 321–28.Google Scholar
  25. 25.
    Ch.-A. Gandin: Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1994.Google Scholar
  26. 26.
    J.C. Villafuerte, E. Pardo, and H.W. Kerr:Metall. Trans. A, 1990, vol. 21A, pp. 2009–19.Google Scholar
  27. 27.
    H. Esaka, J. Stramke, and W. Kurz:Columnar Dendrite Growth in Succinonitrile-Acetone Alloys, Film, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1985.Google Scholar
  28. 28.
    W. Kurz, B. Giovanola, and R. Trivedi:Acta Metall., 1986, vol. 34, pp. 823–30.CrossRefGoogle Scholar
  29. 29.
    Th. Imwinkelried: Ph.D. Thesis, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 1993.Google Scholar
  30. 30.
    J.F. Lancaster:Metallurgy of Welding, 3rd ed., G. Allen and Unwin Publishing, London, 1980.Google Scholar
  31. 31.
    K. Easterling:Introdudion to the Physical Metallurgy of Welding, Butterworth and Co., London, 1983.Google Scholar

Copyright information

© The Minerals, Metals & Material Society 1996

Authors and Affiliations

  • M. Rappaz
    • 1
  • Ch A. Gandin
    • 1
  • J. L. Desbiolles
    • 2
  • Ph. Thévoz
    • 3
  1. 1.Département des Matériaux, Ecole Polytechnique Fédérale de LausanneLaboratoire de Métallurgie PhysiqueLausanneSwitzerland
  2. 2.Département des Matériaux, Ecole Polytechnique Fédérale de LausanneLaboratoire de Métallurgie PhysiqueLausanneSwitzerland
  3. 3.Calcom SALausanneSwitzerland

Personalised recommendations