Metallurgical Transactions A

, Volume 12, Issue 5, pp 749–759 | Cite as

Mechanism of work hardening in Hadfield manganese steel

  • Y. N. Dastur
  • W. C. Leslie
Article

Abstract

When Hadfield manganese steel in the single-phase austenitic condition was strained in tension, in the temperature range - 25 to 300 °C, it exhibited jerky (serrated) flow, a negative (inverse) strain-rate dependence of flow stress and high work hardening, characteristic of dynamic strain aging. The strain rate-temperature regime of jerky flow was determined and the apparent activation energies for the appearance and disappearance of serrations were found to be 104 kJ/mol and 146 kJ/mol, respectively. The high work hardening cannot be a result of mechanical twinning because at -50 °C numerous twins were produced, but the work hardening was low and no twins were formed above 225 °C even though work hardening was high. The work hardening decreased above 300 °C because of the cessation of dynamic strain aging and increased again above 400 °C because of precipitation of carbides. An apparent activation energy of 138 kJ/mol was measured for static strain aging between 300 and 400 °C, corresponding closely to the activation energies for the disapperance of serrations and for the volume diffusion of carbon in Hadfield steel. Evidence from the present study, together with the known effect of manganese on the activity of carbon in austenite and previous internal friction studies of high-manganese steels, lead to the conclusion that dynamic strain aging, brought about by the reorientation of carbon members of C-Mn couples in the cores of dislocations, is the principal cause of rapid work hardening in Hadfield steel.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. A. Hadfield:Metallurgy and Its Influence on Modem Progress, p. 91, Chapman and Hall Ltd., London, 1925.Google Scholar
  2. 2.
    ASTM A 128-75a,Annual Book of ASTM Standards, Part 2, p. 95, ASTM,, Philadelphia, PA, 1979.Google Scholar
  3. 3.
    E. R. Hall:ASM Technical Report No. C6-17.1, p. 15, 1966.Google Scholar
  4. 4.
    D. E. Diesburg and F. Borik:Symposium on Materials for the Mining Industry, p. 15, Climax Molybdenum Company, Greenwich, CN, 1974.Google Scholar
  5. 5.
    R. W. Cahn:The Encyclopedia of Ignorance, p. 140, Pergamon Press, NY, 1977.Google Scholar
  6. 6.
    H. M. Otte:Acta Met., 1957, vol. 5, p. 614.CrossRefGoogle Scholar
  7. 7.
    W. N. Roberts:Trans. TMS-AIME, 1964, vol. 230, p. 373.Google Scholar
  8. 8.
    S. A. Sastri:Proc. 3rd ICSMA, Cambridge, England, Aug. 1973, vol. 1, p. 596. Institute of Metals Monograph and Report Series, no. 36.Google Scholar
  9. 9.
    H. C. Doepken:Trans. AIME, 1952, vol. 194, p. 166.Google Scholar
  10. 10.
    C. H. White and R. W. K. Honeycombe:J. Iron Steel Inst., 1962, vol. 200, p. 457.Google Scholar
  11. 11.
    Z. Nishiyama, M. Oka, and H. Nakagowa:Mem. Inst. Sci. Ind. Res., Osaka Univ., 1964, vol. 21, p. 57.Google Scholar
  12. 12.
    K. S. Raghavan, A. S. Sastri, and M. J. Marcinkowski:Trans. TMS-AIME, 1969, vol. 245, p. 1596.Google Scholar
  13. 13.
    O. O. Lambakakhar and Yu. I. Paskal:Izv. Vyssh. Vchebn. Zaved. Fiz., 1973, vol. 16, p. 26.Google Scholar
  14. 14.
    Dj. Drobnjak and J. G. Parr:Met. Trans., 1975, vol. 40, p. 554.Google Scholar
  15. 15.
    P. Yu. Volosevich, V. N. Gridnev, and Yu. N. Petrov:Fiz. Met. Metalloved., 1975, vol. 40, p. 554.Google Scholar
  16. 16.
    D. J. H. Cockayne, M. L. Jenkins, and I. L. F. Ray:Philos. Mag., 1971, vol. 24, p. 1383.Google Scholar
  17. 17.
    M. L. Jenkins:Philos. Mag., 1912, vol. 26, p. 747.Google Scholar
  18. 18.
    P. J. Brofman and G. S. Ansell:Met. Trans. A., 1978, vol. 9A, p. 879.Google Scholar
  19. 19.
    G. Collette, C. Crussard, A. Kohn, J. Plateau, G. Pomey, and M. Weisz:Rev. de Metal., 1957, vol. 54, p. 433.Google Scholar
  20. 20.
    W. C. Leslie:Metallurgical Effects at High Strain Rates, p. 571, Plenum Press, NY, 1973.Google Scholar
  21. 21.
    S. Sastri and R. Ray:Met. Trans., 1974, vol. 5, p. 1501.CrossRefGoogle Scholar
  22. 22.
    W. Wilson and L. J. Swartzendruber:Comput. Phys. Commun. 1974, vol. 7, p. 151.CrossRefGoogle Scholar
  23. 23.
    A. H. Cottrell and B. A. Bilby:Proc. Phys. Soc., 1949, vol. A62, p. 49.Google Scholar
  24. 24.
    K Gielen and K. Kaplow:Acta Met., 1967, vol. 15, p. 49.CrossRefGoogle Scholar
  25. 25.
    B. W. Christ and P. M. Giles:Trans. TMS-AIME, 1968, vol. 242, p. 1915.Google Scholar
  26. 26.
    J. M. R. Genin and P. A. Flinn:Trans. TMS-AIME, 1968, vol. 242, p. 1419.Google Scholar
  27. 27.
    M. Leosoille and P. Gielen:Met. Trans., 1972, vol. 3, p. 2681.CrossRefGoogle Scholar
  28. 28.
    Y. Katz, H. Mathias, and S. Nadiv:Proc. First JIM Int. Symp. on New Aspects of Martensitic Transformation, Suppl. to Trans. JIM, 1976, vol. 17, p. 381.Google Scholar
  29. 29.
    A. S. Keh, Y. Nakada, and W. C. Leslie:Dislocation Dynamics, p. 381, McGraw-Hill Book Co., NY, 1968.Google Scholar
  30. 30.
    J. T. Barnby:J. Iron Steel Inst., 1965, vol. 203, p. 392.Google Scholar
  31. 31.
    A. Santhanam and R. E. Reed-Hill:Scr. Metall., 1970, vol. 4, p. 529.CrossRefGoogle Scholar
  32. 32.
    T. Shimomura, T. Kainuma, and R. Watanabe:J. Less-Common Met., 1978, vol. 57, p. 147.CrossRefGoogle Scholar
  33. 33.
    R. A. Mulford and U. F. Kocks:Acta Met., 1979, vol. 27, p. 1125.CrossRefGoogle Scholar
  34. 34.
    I. S. Kim and M. C. Chaturvedi:Met. Sci., 1979, vol. 13, p. 691.CrossRefGoogle Scholar
  35. 35.
    A. H. Windle and G. C. Smith:Met. Sci. J., 1970, vol. 4, p. 136.Google Scholar
  36. 36.
    L. J. Cuddy and W. C. Leslie:Acta Met., 1972, vol. 20, p. 1157.CrossRefGoogle Scholar
  37. 37.
    P. R. Cetlin, A. S. Gulec, and R. E. Reed-Hill:Met. Trans., 1973, vol. 4, p. 513.Google Scholar
  38. 38.
    D. J. Dingley and D. McLean:Acta Met., 1967, vol. 15, p. 885.CrossRefGoogle Scholar
  39. 39.
    J. W. Edington and R. E. Smallman:Acta Met., 1964, vol. 12, p. 1313.CrossRefGoogle Scholar
  40. 40.
    B. A. Wilcox and G. C. Smith:Acta Met., 1964, vol. 12, p. 371.CrossRefGoogle Scholar
  41. 41.
    J. S. Blakemore:Met. Trans., 1970, vol. 1, p. 151.Google Scholar
  42. 42.
    B. J. Brindley and J. T. Barnby:Acta Met., 1966, vol. 14, p. 1765.CrossRefGoogle Scholar
  43. 43.
    J. D. Baird and C. R. Mackenzie:J. Iron Steel Inst., 1964, vol. 202, p. 247.Google Scholar
  44. 44.
    T. Takeyama and H. Takahashi:Trans. Iron Steel Inst. Jpn., 1973, vol. 13, p. 293.Google Scholar
  45. 45.
    W. C. Leslie and A. S. Keh:Mechanical Working of Steel, 2, p. 337, Gordon and Breach Science Publishers, NY, 1965.Google Scholar
  46. 46.
    T. S. Ke and C. M. Wang:Sci. Sin., 1955, vol. 4, p. 501.Google Scholar
  47. 47.
    M. E. Blanter:Zh. Tekh. Fiz., 1951, vol. 21, p. 818.Google Scholar
  48. 48.
    P. Haasen and A. Kelly:Acta Met., 1957, vol. 5, p. 192.CrossRefGoogle Scholar
  49. 49.
    R. W. Balluffi:Phys. Status Solidi, 1970, vol. 41, p. 11.Google Scholar
  50. 50.
    V. Kandarpa and J. W. Spretnak:Trans. TMS-AIME, 1969, vol. 245, p. 1439.Google Scholar
  51. 51.
    J. Chipman and E. Brush:Trans. TMS-AIME,, 1968, vol. 242, p. 35.Google Scholar
  52. 52.
    J. D. Baird:The Inhomogeneity of Plastic Deformation, p. 191, ASM, Metals Park, OH, 1973.Google Scholar
  53. 53.
    J. D. Baird and A. Jamieson:J. Iron Steel Inst., 1966, vol. 204, p. 793.Google Scholar

Copyright information

© American Society for Metals and the Metallurgical Society of AIME 1981

Authors and Affiliations

  • Y. N. Dastur
    • 1
  • W. C. Leslie
    • 1
  1. 1.Department of Materials & Metallurgical EngineeringUniversity of MichiganAnn Arbor

Personalised recommendations