Journal of Fourier Analysis and Applications

, Volume 3, Issue 6, pp 647–703 | Cite as

Pointwise fourier inversion: A wave equation approach

  • Mark A. Pinsky
  • Michael E. Taylor
Article

Abstract

Functions of the Laplace operator F(− Δ) can be synthesized from the solution operator to the wave equation. When F is the characteristic function of [0, R 2 ], this gives a representation for radial Fourier inversion. A number of topics related to pointwise convergence or divergence of such inversion, as R → ∞, are studied in this article. In some cases, including analysis on Euclidean space, sphers, hyperbolic space, and certain other symmetric spaces, exact formulas for fundamental solutions to wave equations are available. In other cases, parametrices and other tools of microlocal analysis are effective.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arnold, V., Varchenko, A. and Gusein-Zade, S. (1985).Singularities of Differentiable Mappings, I, Classification of Critical Points, Caustics, and Wave Fronts. Birkhauser, Boston;II, Monodromy and Asymptotics of Integrals, Nauka, Moscow, 1984.Google Scholar
  2. [2]
    Berger, M., Gauduchon, P. and Mazet, E. (1970).Le Spectre d’une Variete Riemannienne, LNM#194, Springer, New York.Google Scholar
  3. [3]
    Bochner, S. (1931). Ein Konvergenzsatz für mehrvariablige Fouriersche Integrale,Math. Zeit. 34, 440–447.CrossRefMathSciNetMATHGoogle Scholar
  4. [4]
    Bochner, S. (1959).Lectures on Fourier Integrals, Princeton University Press, Princeton, NJ.MATHGoogle Scholar
  5. [5]
    Carberry, A. and Soria, F. (1988). Almost-every where convergence of Fourier integrals for functions in Sobolev spaces, and anL 2-localisation principle,Revista Mat. Iberoamericana 4, 319–337.Google Scholar
  6. [6]
    Carleson, L. (1966). On convergence and growth of partial sums of Fourier series.Acta Math. 116, 135–157.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Cheeger, J., Gromov, M. and Taylor, M. (1982). Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds.J. Diff. Geom. 17, 15–53.MATHMathSciNetGoogle Scholar
  8. [8]
    Cheeger, J. and Taylor, M. (1982). Diffraction of waves by conical singularities.Comm. Pure Appl. Math. 35, 275–331, 487–529.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Colzani, L., Crespi, A., Travaglini, G. and Vignati, M. (1993). Equiconvergence theorems for Fourier-Bessel expansions with applications to the harmonic analysis of radial functions in Euclidean and noneuclidean spaces.Trans. AMS 338, 43–55.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Colzani, L., Crespi, A., Travaglini, G. and Vignati, M. (1992). The Hilbert transform with exponential weights.Proc. AMS 114, 451–457.MATHCrossRefGoogle Scholar
  11. [11]
    Colzani, L. and Vignati, M. (1995). Gibbs phenomena for multiple Fourier integrals.J. Approximation Theory 80, 119–131.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Courant, R. and Hilbert, D. (1966).Methods of Mathematical Physics II, John Wiley & Sons, New York.Google Scholar
  13. [13]
    Darboux, M. (1874). Sur les series dont le terme general depend de deux angles et qui servent a exprimer des fonctions arbitraires entre des limites donnees.J. Math. Pures Appl. 19, 1–18.Google Scholar
  14. [14]
    Davies, E.B., Simon, B. and Taylor, M. (1988).L p spectral theory of Kleinian groups.J. Funct. Anal. 78, 116–136.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Duistermaat, J. (1996).Fourier Integral Operators, 2nd ed. Birkhauser, Boston.MATHGoogle Scholar
  16. [16]
    Duistermaat, J. (1974). Oscillatory integrals, Lagrange immersions and unfolding of singularities.Comm. Pure Appl. Math. 27, 207–281.MATHCrossRefMathSciNetGoogle Scholar
  17. [17]
    Federer, H. (1970). On spherical summation of the Fourier transform of a distribution whose partial derivatives are represented by integration.Ann. Math. 91, 136–143.CrossRefMathSciNetGoogle Scholar
  18. [18]
    Fefferman, C. (1971). The multiplier problem for the ball.Ann. of Math. 94, 330–336.CrossRefMathSciNetGoogle Scholar
  19. [19]
    Friedlander, F. (1958).Sound Pulses, Cambridge University Press, Cambridge, MA.MATHGoogle Scholar
  20. [20]
    Gray, A. and Pinsky, M. (1993). Gibbs’ phenomenon for Fourier-Bessel series.Expositiones Math. 11, 123–135.MATHMathSciNetGoogle Scholar
  21. [21]
    Guillemin, V. and Sternberg, S. (1977). Geometric Asymptotics,Amer. Math. Soc., Providence, RI.MATHGoogle Scholar
  22. [22]
    Helgason, S. (1978).Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York.MATHGoogle Scholar
  23. [23]
    Helgason, S. (1992). Huygens’principle for wave equations on symmetric spaces.Jour. Funct. Anal. 107, 279–288.MATHCrossRefMathSciNetGoogle Scholar
  24. [24]
    Hörmander, L. (1985).The Analysis of Linear Partial Differential Operators, Vols. 3–4, Springer, New York.Google Scholar
  25. [25]
    Hörmander, L. (1968). The spectral function of an elliptic operator.Acta Math. 121, 193–218.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Hunt, R. (1967). On the convergence of Fourier series, inOrthogonal Expansions and their Continuous Analogues (D. Haimo, ed.), Southern Illinois University Press, pp. 235–255.Google Scholar
  27. [27]
    Kahane, J. (1995). Le phenomene de Pinsky et la geometrie des surfaces.C.R. Acad. Sci. Paris 321, 1027–1029.MATHMathSciNetGoogle Scholar
  28. [28]
    Kenig, C., Stanton, R. and Tomas, P. (1982). Divergence of eigenfunction expansions.J. Funct. Anal. 46, 28–44.MATHCrossRefMathSciNetGoogle Scholar
  29. [29]
    Lebedev, N. (1972).Special Functions and Their Applications, Dover, New York.MATHGoogle Scholar
  30. [30]
    Majda, A. and Taylor, M. (1977). Inverse scattering problems for transparent obstacles, electromagnetic waves, and hyperbolic systems.Comm. PDE 2, 395–438.MATHMathSciNetGoogle Scholar
  31. [31]
    Melrose, R. (1979). Singularities and energy decay in acoustical scattering.Duke Math. J. 46, 43–59.MATHCrossRefMathSciNetGoogle Scholar
  32. [32]
    Melrose, R. and Sjöstrand, J. (1978), (1982). Singularities of boundary problems, I.Comm. Pure Appl. Math. 31, 593–617; II,Comm. Pure Appl. Math. 35, 129–168.MATHCrossRefMathSciNetGoogle Scholar
  33. [33]
    Melrose, R. and Taylor, M. (1986). The radiation pattern of a diffracted wave near the shadow boundary.Comm. PDE 11, 599–672.MATHMathSciNetGoogle Scholar
  34. [34]
    Morawetz, C. (1975). Notes on time decay and scattering for some hyperbolic problems.Reg. Conf. Ser. Appl. Math. #19, SIAM.Google Scholar
  35. [35]
    Morawetz, C., Ralston, J. and Strauss, W. (1977). Decay of solutions of the wave equation outside nontrapping obstacles.Comm. Pure Appl. Math. 30, 447–508.MATHCrossRefMathSciNetGoogle Scholar
  36. [36]
    Olafsson, G. and Schlichtkrull, H. (1992). Wave propagation on Riemannian symmetric spaces.J. Funct. Anal. 107, 270–278.MATHCrossRefMathSciNetGoogle Scholar
  37. [37]
    Pinsky, M. (1993). Problem #10295,Amer. Math. Monthly 100, 291.Google Scholar
  38. [38]
    Pinsky, M. (1994). Pointwise Fourier inversion and related eigenfunction expansions.Comm. Pure Appl. Math. 47, 653–681.MATHCrossRefMathSciNetGoogle Scholar
  39. [39]
    Pinsky, M. (1995). Pointwise Fourier inversion in several variables.Notices AMS 42, 330–334.MATHMathSciNetGoogle Scholar
  40. [40]
    Pinsky, M. (1981). On the spectrum of Cartan-Hadamard manifolds.Pacific J. Math. 94, 223–230.MATHMathSciNetGoogle Scholar
  41. [41]
    Pinsky, M. and Prather, C. (1996). Pointwise convergence ofn-dimensional Hermite expansions.Jour. Math. Anal. Appl. 199, 620–628.MATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    Pinsky, M., Stanton, N. and Trapa, P. (1993). Fourier series of radial functions in several variables.J. Funct. Anal. 116, 111–132.MATHCrossRefMathSciNetGoogle Scholar
  43. [43]
    Ralston, J. (1979). Note on the decay of acoustic waves.Duke Math. J. 46, 799–804.MATHCrossRefMathSciNetGoogle Scholar
  44. [44]
    Sogge, C. (1987). On the convergence of Riesz means on compact manifolds.Ann. Math. 126, 439–447.CrossRefMathSciNetGoogle Scholar
  45. [45]
    Sogge, C. (1993).Fourier Integrals in Classical Analysis. Cambridge University Press, Cambridge, MA.MATHGoogle Scholar
  46. [46]
    Sommerfeld, A. (1896). Mathematische theorie der diffraction.Math. Ann. 47, 317–374.CrossRefMathSciNetMATHGoogle Scholar
  47. [47]
    Stein, E. (1993).Harmonic Analysis, Princeton University Press, Princeton, NJ.MATHGoogle Scholar
  48. [48]
    Stein, E. (1976). Maximal functions: spherical means.Proc. NAS, U.S.A. 73, 2174–2175.MATHCrossRefGoogle Scholar
  49. [49]
    Szegö, G. (1975).Orthogonal Polynomials, Colloq. Publ. #23, 4th ed., AMS, Providence, RI.MATHGoogle Scholar
  50. [50]
    Taylor, M. (1981).Pseudodifferential Operators, Princeton University Press, Princeton, NJ.MATHGoogle Scholar
  51. [51]
    Taylor, M. (1986).Noncommutative Harmonic Analysis, Math. Surveys, Amer. Math. Soc., Providence, RI.MATHGoogle Scholar
  52. [52]
    Taylor, M. (1989).L p estimates on functions of the Laplace operator.Duke Math. J. 58, 773–793.MATHCrossRefMathSciNetGoogle Scholar
  53. [53]
    Taylor, M. (1996).Partial Differential Equations, Vols. 1–3, Springer-Verlag, New York.Google Scholar
  54. [54]
    Thangavelu, S. (1993).Lectures on Hermite and Laguerre Expansions. Princeton University Press, Princeton, NJ.MATHGoogle Scholar
  55. [55]
    Vega, L. (1988). Schrödinger equations: pointwise convergence to the initial data.Proc. AMS 102, 874–878.MATHCrossRefMathSciNetGoogle Scholar
  56. [56]
    Weyl, H. (1909). Die Gibb’sche Erscheinung in der Theorie Kugelfunktionen.Rend. Circ. Math. Palermo 29, 308–323.CrossRefGoogle Scholar
  57. [57]
    Zygmund, A. (1959).Trigonometric Series, Cambridge University Press, Cambridge, MA.MATHGoogle Scholar

Copyright information

© CRC Press LLC 1997

Authors and Affiliations

  • Mark A. Pinsky
    • 1
    • 2
  • Michael E. Taylor
    • 1
    • 2
  1. 1.Department of MathematicsNorthwestern UniversityEvanston
  2. 2.Department of MathematicsUniversity of North CarolinaChapel Hill

Personalised recommendations