Annals of Biomedical Engineering

, Volume 24, Issue 4, pp 457–473 | Cite as

1995 Whitaker lecture: Delivery of molecules, particles, and cells to solid tumors

  • Rakesh K. Jain
Whitaker Lecture

Abstract

To reach cancer cells in a tumor, a blood-borne therapeutic agent must make its way into the blood vessels of the tumor and across the vessel wall into the interstitium, and finally migrate through the interstitium. Unfortunately, tumors often develop in ways that hinder each of these steps. Our research goals are to analyze each of these steps experimentally and theoretically, and then to integrate the resulting information in a unified theoretical framework. This paradigm of analysis and synthesis has allowed us to obtain a better understanding of physiological barriers in solid tumors, and to develop novel strategies to exploit and/or to overcome these barriers for improved cancer detection and treatment.

Keywords

Tumor microcirculation Angiogenesis Blood flow Vascular Permeability Diffusion and convection Receptor-ligand binding Interstitial pressure Lymphatics Cell adhesion and deformation Cancer detection and treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arbit, E., J. Lee, and G. DiResta. Interstitial hypertension in human brain tumors: possible role in peritumoral edema formation. In: Intracranial Pressure, edited by H. Nagai, K. Kamiya, and S. Ishii. Tokyo: Springer-Verlag, 1994, pp. 609–614.Google Scholar
  2. 2.
    Baish, J. W., Y. Gazit, D. A. Berk, M. Nozue, L. T. Baxter, and R. K. Jain. Role of tumor vascular architecture in nutrient and drug delivery: An invasion percolation based network model.Microvasc. Res., in press.Google Scholar
  3. 3.
    Baxter, B. T., and R. K. Jain. Pharmacokinetic analysis of the microscopic distribution of enzyme-conjugated antibodies and prodrugs: Comparison with experimental data.Br. J. Cancer 73:447–456, 1996.PubMedGoogle Scholar
  4. 4.
    Baxter, L. T., and R. K. Jain. Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection.Microvasc. Res. 37:77–104, 1989.PubMedCrossRefGoogle Scholar
  5. 5.
    Baxter, L. T., and R. K. Jain. Transport of fluid and macromolecules in tumors. II. Role of heterogeneous perfusion and lymphatics.Microvasc. Res. 40:246–263, 1990.PubMedCrossRefGoogle Scholar
  6. 6.
    Baxter, L. T., and R. K. Jain. Transport of fluid and macromolecules in tumors. III. Role of binding and metabolism.Microvasc. Res. 41:5–23, 1991.PubMedCrossRefGoogle Scholar
  7. 7.
    Baxter, L. T., and R. K. Jain. Transport of fluid and macromolecules in tumors. IV. A microscopic model of the perivascular distribution.Microvasc. Res. 41:252–272, 1991.PubMedCrossRefGoogle Scholar
  8. 8.
    Baxter, L. T., F. Yuan, and R. K. Jain. Pharmacokinetic analysis of the perivascular distribution of bifunctional antibodies and haptens: Comparison with experimental data.Cancer Res. 52:5838–5844, 1992.PubMedGoogle Scholar
  9. 9.
    Baxter, L. T., H. Zhu, D. G. Mackensen, W. F. Butler, and R. K. Jain. Biodistribution of monoclonal antibodies: Scale-up from mouse to man using a physiologically based pharmacokinetic model.Cancer Res. 55:4611–4622, 1995.PubMedGoogle Scholar
  10. 10.
    Baxter, L. T., H. Zhu, D. G. Mackensen, and R. K. Jain. Physiologically based pharmacokinetic model for specific and nonspecific monoclonal antibodies and fragments in normal tissues and human tumor xenografts in nude mice.Cancer Res. 54:1517–1528, 1994.PubMedGoogle Scholar
  11. 11.
    Beardsley, T. Trends in cancer epidemiology: A war not won.Sci. Am. 270:118–126, 1994.Google Scholar
  12. 12.
    Berk, D. A., M. A. Swartz, A. J. Leu, and R. K. Jain. Transport in lymphatic capillaries. II. Microscopic velocity measurement with fluorescence recovery after photobleaching.Am. J. Physiol. 270:H330-H337, 1996.PubMedGoogle Scholar
  13. 13.
    Berk, D. A., F. Yuan, M. Leunig, and R. K. Jain. Fluorescence photobleaching with spatial Fourier analysis: Measurement of diffusion in light-scattering media.Biophys. J. 65:2428–2436, 1993.PubMedGoogle Scholar
  14. 14.
    Berk, D. A., F. Yuan, M. Leunig, and R. K. Jain. Interstitial protein transport in a human tumor xenograft: Direct in vivo measurement of specific and nonspecific binding (abstract). Biomedical Engineering Society Meeting, Boston, 1995.Google Scholar
  15. 15.
    Boucher, Y., L. T. Baxter, and R. K. Jain. Interstitial pressure gradients in tissue-isolated and subcutaneous tumors: Implications for therapy.Cancer Res. 50:4478–4484, 1990.PubMedGoogle Scholar
  16. 16.
    Boucher, Y., C. Brekken, P. A. Netti, L. T. Baxter, and R. K. Jain. Hydraulic conductivity of solid tumors: A novel in vivo measurement technique and implications for drug delivery (abstract). Biomedical Engineering Society Meeting, Boston, 1995.Google Scholar
  17. 17.
    Boucher, Y., and R. K. Jain. Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: Implications for vascular collapse.Cancer Res. 52:511–5114, 1992.Google Scholar
  18. 18.
    Boucher, Y., J. M. Kirkwood, D. Opacic, M. Desantis, and R. K. Jain. Interstitial hypertension in superficial metastatic melanomas in humans.Cancer Res. 51:6691–6694, 1991.PubMedGoogle Scholar
  19. 19.
    Boucher, Y., H. Salehi, B. P. Witwer, G. R. Harsh, and R. K. Jain. Interstitial fluid pressure in intracranial tumors in patients and in rodents (abstract). American Association for Cancer Research Meeting, Toronto, 1995.Google Scholar
  20. 20.
    Chary, S. R., and R. K. Jain. Direct measurement of interstitial convection and diffusion of albumin in normal and neoplastic tissues by fluorescence photobleaching.Proc. Natl. Acad. Sci. USA 86:5385–5389, 1989.PubMedCrossRefGoogle Scholar
  21. 21.
    Curti, B. D., W. J. Urba, W. G. Alvord, J. E. Janik, J. W. Smith, K. Madara, and D. L. Longo. Interstitial pressure of subcutaneous nodules in melanoma and lymphoma patients: Changes during treatment.Cancer Res. 53:2204S-2207S, 1993.Google Scholar
  22. 22.
    Dedrick, R. L. Animal scale-up.J. Pharmacokinet. Biopharm. 1:435–461, 1973.PubMedCrossRefGoogle Scholar
  23. 23.
    Dellian, M., G. Helmlinger, F. Yuan, and R. K. Jain. Interstitial pH in solid tumors measured by fluorescence ratio imaging and optical sectioning: Effect of glucose on spatial and temporal gradients (abstract). Biomedical Engineering Society Meeting, Boston, 1995.Google Scholar
  24. 24.
    Dellian, M., B. P. Witwer, H. Salehi, F. Yuan, and R. K. Jain. Quantitation and physiological characterization of angiogenic vessels in mice: Effect of bFGF, VEGF/VPF and microenvironment.Amer. J. Pathol. in press, 1996.Google Scholar
  25. 25.
    Dudar, T. E., and R. K. Jain. Microcirculatory flow changes during tissue growth.Microvasc. Res. 25:1–21, 1983.PubMedCrossRefGoogle Scholar
  26. 26.
    Dudar, T. E., and R. K. Jain. Differential response of normal and tumor microcirculation to hyperthermia.Cancer Res. 44:605–612, 1984.PubMedGoogle Scholar
  27. 27.
    Dvorak, H. F., L. F. Brown, M. Detmar, and A. M. Dvorak. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis.Am. J. Pathol. 146:1029–1039, 1995.PubMedGoogle Scholar
  28. 28.
    Endrich, B., H. S. Reinhold, J. F. Gross, and M. Intaglietta. Tissue perfusion inhomogeneity during early tumor growth in rats.J. Natl. Cancer Inst. 62:387–395, 1979.PubMedGoogle Scholar
  29. 29.
    Eskey, C. J., A. P. Koretsky, M. M. Domach, and R. K. Jain.2H-nuclear magnetic resonance imaging of tumor blood flow: Spatial and temporal heterogeneity in a tissue-isolated mammary adenocarcinoma.Cancer Res. 52:6010–6019, 1992.PubMedGoogle Scholar
  30. 30.
    Eskey, C. J., A. P. Koretsky, M. M. Domach, and R. K. Jain. Role of oxygen vs. glucose in energy metabolism in a mammary carcinoma perfused ex vivo: Direct measurement by31P NMR.Proc. Natl. Acad. Sci. USA 90:2646–2650, 1993.PubMedCrossRefGoogle Scholar
  31. 31.
    Eskey, C. J., N. Wolmark, C. L. McDowell, M. M. Domach, and R. K. Jain. Residence time distributions of various tracers in tumors: Implications for drug delivery and blood flow measurement.J. Natl. Cancer Inst. 86: 293–299, 1994.PubMedCrossRefGoogle Scholar
  32. 32.
    Fidler, I.J., and L. M. Ellis. The implications of angiogenesis for biology and therapy of cancer metastasis.Cell 79:185–188, 1994.PubMedCrossRefGoogle Scholar
  33. 33.
    Folkman, J. Tumor angiogenesis. In: The Molecular Basis of Cancer, edited by J. Mendelsohn, P. M. Howley, M. A. Israel, and L. A. Liotta. Philadelphia: W. B. Saunders, 1995, pp. 206–232.Google Scholar
  34. 34.
    Fukumura, D., H. A. Salehi, B. Witwer, R. F. Tuma, R. J. Melder, and R. K. Jain. TNFα-induced leukocyte-adhesion in normal and tumor vessels: Effect of tumor type, transplantation site and host strain.Cancer Res. 55: 4824–4829, 1995.PubMedGoogle Scholar
  35. 35.
    Gamble, J. R., and Y. Khew-Goodall. Transforming growth factor-beta inhibits E-selectin expression on human endothelial cells.J. Immunol. 150:4494–4503, 1993.PubMedGoogle Scholar
  36. 36.
    Gamble J. R., and M. A. Vadas. Endothelial adhesiveness for blood neutrophils is inhibited by transforming growth factor-beta.Science 242:97–99, 1988.PubMedCrossRefGoogle Scholar
  37. 37.
    Gamble, J. R., and M. A. Vadas. Endothelial cell adhesiveness for human T lymphocytes is inhibited by transforming growth factor-beta.J. Immunol. 146;1149–1154, 1991.PubMedGoogle Scholar
  38. 38.
    Gazit, Y., D. A. Berk, M. Leunig, L. T. Baxter, and R. K. Jain. Scale-invariant behavior and vascular network formation in normal and tumor tissue.Phys. Rev. Lett. 75:2428–2431, 1995.CrossRefPubMedGoogle Scholar
  39. 39.
    Gerlowski, L. E., and R. K. Jain. Physiologically based pharmacokinetic modeling: Principles and applications.J. Pharm. Sci. 72:1103–1127, 1983.PubMedCrossRefGoogle Scholar
  40. 40.
    Gerlowski, L. E., and R. K. Jain. Effect of hyperthermia on microvascular permeability to macromolecules in normal tissues.Int. J. Microcirc. Clin. Exp. 4:363–372, 1985.PubMedGoogle Scholar
  41. 41.
    Gerlowski, L. E., and R. K. Jain. Microvascular permeability of normal and neoplastic tissues.Microvasc. Res. 31:288–305, 1986.PubMedCrossRefGoogle Scholar
  42. 42.
    Gullino, P. M. Techniques in tumor pathophysiology. In: Methods in Cancer Research, edited by H. Busch. New York: Academic Press, 1970, pp. 45–92.Google Scholar
  43. 43.
    Gutmann, R., M. Leunig, J. Feyh, A. E. Goetz, K. Messmer, E. Kastenbauer, and R. K. Jain. Interstitial hypertension in head and neck tumors in patients: Correlation with tumor size.Cancer Res. 52:1993–1995, 1992.PubMedGoogle Scholar
  44. 44.
    Hamberg, L. M., P. E. Kristjansen, G. J. Hunter, G. L. Wolf, and R. K. Jain. Spatial heterogeneity in tumor perfusion measured with functional computed tomography at 0.05 microliter resolution.Cancer Res. 54:6032–6036, 1994.PubMedGoogle Scholar
  45. 45.
    Haying, J. B., and S. K. Williams. Reduced adhesion of human microvascular endothelial cells to collagen in response to basic FGF is mediated by β1 integrin.FASEB J. 8: p. A45, Abstract 263, 1994.Google Scholar
  46. 46.
    Jain, R. K. Effect of inhomogeneities and finite boundaries on temperature distribution in a perfused medium with application to tumors.Trans. ASME J. Biomech. Eng. 100:235–241, 1978.Google Scholar
  47. 47.
    Jain, R. K. Transient temperature distribution in an infinite perfused medium due to a time-dependent, spherical heat source.Trans. ASME J. Biomech. Eng. 101:82–86, 1979.Google Scholar
  48. 48.
    Jain, R. K. Transport of molecules across tumor vasculature.Cancer Metastasis Rev. 6:559–593, 1987.PubMedCrossRefGoogle Scholar
  49. 49.
    Jain, R. K. Transport of molecules in the tumor interstitium: A review.Cancer Res. 47:3039–3051, 1987.PubMedGoogle Scholar
  50. 50.
    Jain, R. K. Determinants of tumor blood flow: A review.Cancer Res. 48:2641–2658, 1988.PubMedGoogle Scholar
  51. 51.
    Jain, R. K. Delivery of novel therapeutic agents in tumor: Physiological barriers and strategies.J. Natl. Cancer Inst. 81:570–576, 1989.PubMedCrossRefGoogle Scholar
  52. 52.
    Jain, R. K. Barriers to drug delivery in solid tumors.Sci. Am. 271:58–65, 1994.PubMedCrossRefGoogle Scholar
  53. 53.
    Jain, R. K. Transport phenomena in tumors.Adv. Chem. Eng. 20:129–200, 1994.CrossRefGoogle Scholar
  54. 54.
    Jain, R. K., and L. T. Baxter. Mechanisms of heterogeneous distribution of monoclonal antibodies and other mac-romolecules in tumors: Significance of elevated interstitial pressure.Cancer Res. 48:7022–7032, 1988.PubMedGoogle Scholar
  55. 55.
    Jain, R. K., Y. Boucher, A. Stacey-Clear, R. Moore, and D. Kopans. Method for locating tumors prior to needle biopsy. U.S. Patent 5,396,897, March 14, 1995.Google Scholar
  56. 56.
    Jain, R. K., G. C. Koenig, M. Dellian, D. Fukumura, L. L. Munn, and R. J. Melder. Leukocyte-endothelial adhesion and angiogenesis in tumors.Cancer Metastasis Rev. in press, 1996.Google Scholar
  57. 57.
    Jain, R. K., S. A. Shah, and P. L. Finney. Continuous noninvasive monitoring of pH and temperature in rat Walker 256 carcinoma during normoglycemia and hyperglycemia.J. Natl. Cancer Inst. 73:429–436, 1984.PubMedGoogle Scholar
  58. 58.
    Jain, R. K., and K. A. Ward-Hartley. Tumor blood flow: Characterization, modifications and role in hyperthermia.IEEE Trans. Sonics Ultrasonics 31:504–526, 1984.Google Scholar
  59. 59.
    Jain, R. K., and J. Wei. Dynamics of drug transport in solid tumors: Distributed parameter model.J. Bioeng. 1: 313–329, 1977.Google Scholar
  60. 60.
    Jain, R. K., J. Wei, and P. M. Gullino. Pharmacokinetics of methotrexate in solid tumors.J. Pharmacokinet. Biopharm. 7:181–194, 1979.CrossRefGoogle Scholar
  61. 61.
    Jallal, B., F. Powell, J. Zachwieja, C. Brakebusch, L. Germain, J. Jacobs, S. Iacobelli, and A. Ullrich. Suppression of tumor growth in vivo by local and systemic 90K level increase.Cancer Res. 55:3223–3227, 1995.PubMedGoogle Scholar
  62. 62.
    Johnson, E. M., D. A. Berk, R. K. Jain, and W. M. Deen. Diffusion and partitioning of proteins in charged agarose gels.Biophys. J. 68:1561–1568, 1995.PubMedGoogle Scholar
  63. 63.
    Johnson, E. M., D. A. Berk, R. K. Jain, and W. M. Deen. Hindered diffusion in agarose gels: Test of effective medium model.Biophys. J. 70:1017–1026, 1996.PubMedGoogle Scholar
  64. 64.
    Juweid, M., R. Neumann, C. Paik, M. J. Perez-Bacete, J. Sato, W. Van Osdol, and J. N. Weinstein. Micropharmacology of monoclonal antibodies in solid tumor: Direct experimental evidence for a binding site barrier.Cancer Res. 52:5144, 1992.PubMedGoogle Scholar
  65. 65.
    Kaufman, E. N., and R. K. Jain. Quantification of transport and binding parameters using fluorescence recovery after photobleaching. Potential for in vivo applications.Biophys. J. 58:873–885, 1990.PubMedGoogle Scholar
  66. 66.
    Kaufman, E. N., and R. K. Jain. Measurement of mass transport and reaction parameters in bulk solution using photobleaching. Reaction limited binding regime.Biophys. J. 60:596–610, 1991.PubMedGoogle Scholar
  67. 67.
    Kaufman, E. N., and R. K. Jain. Effect of bivalent interaction upon apparent antibody affinity: Experimental confirmation of theory using fluorescence photobleaching and implications for antibody binding assays.Cancer Res. 52: 4157–4167, 1992.PubMedGoogle Scholar
  68. 68.
    Kaufman, E. N., and R. K. Jain. In vitro measurement and screening of monoclonal antibody affinity using fluorescence photobleaching.J. Immunol. Methods 155:1–17, 1992.PubMedCrossRefGoogle Scholar
  69. 69.
    Kitayama, J., J. Nagawa, H. Yasuhara, N. Tsuno, W. Kimura, Y. Shibata, and T. Muto. Suppressive effect of basic fibroblast growth factor on transendothelial emigration of CD4(+) T-lymphocyte.Cancer Res. 54:4729–4733, 1994.PubMedGoogle Scholar
  70. 70.
    Kristjansen, P. E., Y. Boucher, and R. K. Jain. Dexamethasone reduces the interstitial fluid pressure in a human colon adenocarcinoma xenograft.Cancer Res. 53:4764–4766, 1993.PubMedGoogle Scholar
  71. 71.
    Kristjansen, P. E., S. Roberge, I. Lee, and R. K. Jain. Tissue-isolated human tumor xenografts in athymic nude mice.Microvasc. Res. 48:389–402, 1994.PubMedCrossRefGoogle Scholar
  72. 72.
    Kristjansen, P. E. G., T. J. Brown, L. A. Shipley, and R. K. Jain. Intratumor pharmacokinetics, flow resistance, and metabolism during gemcitabine infusion in ex vivo perfused human small cell lung cancer.Clin. Cancer Res. 2:359–367, 1996.PubMedGoogle Scholar
  73. 73.
    Lee, I., Y. Boucher, T. J. Demhartner, and R. K. Jain. Changes in tumor blood flow, oxygenation and interstitial fluid pressure induced by pentoxifylline.Br. J. Cancer 69:492–496, 1994.PubMedGoogle Scholar
  74. 74.
    Lee, I., Y. Boucher, and R. K. Jain. Nicotinamide can lower tumor interstitial fluid pressure: Mechanistic and therapeutic implications.Cancer Res. 52:3237–3240, 1992.PubMedGoogle Scholar
  75. 75.
    Lee, I., T. J. Demhartner, Y. Boucher, R. K. Jain, and M. Intaglietta. Effect of hemodilution and resuscitation on tumor interstitial fluid pressure, blood flow, and oxygenation.Microvasc. Res. 48:1–12, 1994.PubMedCrossRefGoogle Scholar
  76. 76.
    Less, J. R., M. C. Posner, Y. Boucher, D. Borochovitz, N. Wolmark, and R. K. Jain. Interstitial hypertension in human breast and colorectal tumors.Cancer Res. 52:6371–6374, 1992.PubMedGoogle Scholar
  77. 77.
    Less, J. R., M. C. Posner, N. Wolmark, and R. K. Jain. Geometric resistance to blood flow and vascular network architecture in human colorectal carcinoma (abstract). American Association for Cancer Research Meeting, Houston, 1991.Google Scholar
  78. 78.
    Less, J. R., T. C. Skalak, E. M. Sevick, and R. K. Jain. Microvascular architecture in a mammary carcinoma: Branching patterns and vessel dimensions.Cancer Res. 51:265–273, 1991.PubMedGoogle Scholar
  79. 79.
    Leu, A. J., D. A. Berk, F. Yuan, and R. K. Jain. Flow velocity in the superficial lymphatic network of the mouse tail.Am. J. Physiol. 267:H1507-H1513, 1994.PubMedGoogle Scholar
  80. 80.
    Leunig, M., A. E. Goetz, M. Dellian, G. Zetterer, F. Gamarra, R. K. Jain, and K.Messmer. Interstitial fluid pressure in solid tumors following hyperthermia: Possible correlation with therapeutic response.Cancer Res. 52:487–490, 1992.PubMedGoogle Scholar
  81. 81.
    Leunig, M., A. E. Goetz, F. Gamarra, G. Zetterer, K. Messmer, and R. K. Jain. Photodynamic therapy-induced alterations in interstitial fluid pressure, volume and water content of an amelanotic melanoma in the hamster.Br. J. Cancer 69:101–103, 1994.PubMedGoogle Scholar
  82. 82.
    Leunig, M., F. Yuan, D. A. Berk, L. E. Gerweck, and R. K. Jain. Angiogenesis and growth of isografted bone: Quantitative in vivo assay in nude mice.Lab. Invest. 71: 300–307, 1994.PubMedGoogle Scholar
  83. 83.
    Leunig, M., F. Yuan, M. D. Menger, Y. Boucher, A. E. Goetz, K. Messmer, and R. K. Jain. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice.Cancer Res. 52:6553–6560, 1992.PubMedGoogle Scholar
  84. 84.
    Lichtenbeld, H., F. Yuan, C. C. Michel, and R. K. Jain. Perfusion of single tumor vessels (abstract). American Association for Cancer Research Meeting, Toronto, 1995.Google Scholar
  85. 85.
    Martin, G. R., and R. K. Jain. Fluorescence ratio imaging measurement of pH gradients: Calibration and application in normal and tumor tissues.Microvasc. Res. 46:216–230, 1993.PubMedCrossRefGoogle Scholar
  86. 86.
    Martin, G. R., and R. K. Jain. Noninvasive measurement of interstitial pH profiles in normal and neoplastic tissue using fluorescence ratio imaging microscopy.Cancer Res. 54:5670–5674, 1994.PubMedGoogle Scholar
  87. 87.
    Melder, R. J., A. L. Brownell, T. M. Shoup, G. L. Brownell, and R. K. Jain. Imaging of activated natural killer cells in mice by positron emission tomography: Preferential uptake in tumors.Cancer Res. 53:5867–5871, 1993.PubMedGoogle Scholar
  88. 88.
    Melder, R. J., D. Elmaleh, A. L. Brownell, G. L. Brownell, and R. K. Jain. A method for labeling cells for positron emission tomography (PET) studies.J. Immunol. Methods 175:79–87, 1994.PubMedCrossRefGoogle Scholar
  89. 89.
    Melder, R. J., and R. K. Jain. Kinetics of interleukin-2 induced changes in rigidity of human natural killer cells.Cell Biophys. 20:161–176, 1992.PubMedGoogle Scholar
  90. 90.
    Melder, R. J., and R. K. Jain. Reduction of rigidity in human activated natural killer cells by thioglycollate treatment.J. Immunol. Methods 175:69–77, 1994.PubMedCrossRefGoogle Scholar
  91. 91.
    Melder, R. J., G. Koenig, B. Witwer, N. Safabakhsh, L. L. Munn, and R. K. Jain. Activated natural killer cells bind angiogenic vessels through CD 18 and VLA4 dependent adhesion (abstract). American Association for Cancer Research Meeting, Washington, DC, 1996.Google Scholar
  92. 92.
    Melder, R. J., L. L. Munn, S. Yamada, C. Ohkubo, and R. K. Jain. Selectin and integrin mediated T lymphocyte rolling and arrest on TNFα-activated endothelium is augmented by erythrocytes.Biophys. J. 69:2131–2138, 1995.PubMedGoogle Scholar
  93. 93.
    Melder, R. J., H. A. Salehi, and R. K. Jain. Localization of activated natural killer cells in MCaIV mammary carcinoma grown in cranial windows in C3H mice.Microvasc. Res. 50:35–44, 1995.PubMedCrossRefGoogle Scholar
  94. 94.
    Munn, L., G. C. Koenig, R. K. Jain, and R. J. Melder. Kinetics of adhesion molecule expression and spatial organization using targeted sampling fluorometry.BioTechniques 19:622–631, 1995.PubMedGoogle Scholar
  95. 95.
    Munn, L. L., R. J. Melder, and R. K. Jain. Analysis of cell flux in the parallel plate flow chamber: Implications for cell capture studies.Biophys. J. 67:889–895, 1994.PubMedGoogle Scholar
  96. 96.
    Nathanson, S. D., and L. Nelson. Interstitial fluid pressure in breast cancer, benign breast conditions, and breast parenchyma.Ann. Surg. Oncol. 1:333–338, 1994.PubMedGoogle Scholar
  97. 97.
    Netti, P. A., L. T. Baxter, Y. Boucher, and R. K. Jain. Effect of transvascular fluid exchange on arterio-venous pressure relationship: Implication for temporal and spatial heterogeneities in tumor blood flow.Microvasc. Res. in press, 1996.Google Scholar
  98. 98.
    Netti, P. A., L. T. Baxter, Y. Boucher, R. Skalak, and R. K. Jain. Time dependent behavior of interstitial fluid pressure in solid tumors: Implications for drug delivery.Cancer Res. 55:5451–5458, 1995.PubMedGoogle Scholar
  99. 99.
    Nugent, L. J., and R. K. Jain. Extravascular diffusion in normal and neoplastic tissues.Cancer Res. 44:238–244, 1984.PubMedGoogle Scholar
  100. 100.
    Ohkubo, C., D. Bigos, and R. K. Jain. Interleukin 2 induced leukocyte adhesion to the normal and tumor microvascular endothelium in vivo and its inhibition by dextran sulfate: Implications for vascular leak syndrome.Cancer Res. 51:1561–1563, 1991.PubMedGoogle Scholar
  101. 101.
    Patan, S., L. L. Munn, and R. K. Jain. Intussusceptive microvascular growth in solid tumors: A novel mechanism of tumor angiogenesis.Microvasc. Res. 51:260–272, 1996.PubMedCrossRefGoogle Scholar
  102. 102.
    Pierson, R. N., D. C. Price, J. Wang, and R. K. Jain. Extracellular water measurements: Organ tracer kinetics of bromide and sucrose in rats and man.Am. J. Physiol. 235:254–264, 1978.Google Scholar
  103. 103.
    Rippe, B., and B. Haraldsson. Fluid and protein fluxes across small and large pores in the microvasculature. Application of two-pore equations.Acta Physiol. Scand. 131: 411–428, 1987.PubMedCrossRefGoogle Scholar
  104. 104.
    Roh, H. D., Y. Boucher, S. Kalnicki, R. Buchsbaum, W. D. Bloomer, and R. K. Jain. Interstitial hypertension in carcinoma of uterine cervix in patients: Possible correlation with tumor oxygenation and radiation response.Cancer Res. 51:6695–6698, 1991.PubMedGoogle Scholar
  105. 105.
    Sasaki, A., R. K. Jain, A. A. Maghazachi, R. H. Goldfarb, and R. B. Herberman. Low deformability of lymphokine-activated killer cells as a possible determinant of in vivo distribution.Cancer Res. 49:3742–3746, 1989.PubMedGoogle Scholar
  106. 106.
    Sasaki, A., R. J. Melder, T. L. Whiteside, R. B. Herberman, and R. K. Jain. Preferential localization of human adherent lymphokine-activated killer cells in tumor microcirculation.J. Natl. Cancer Inst. 83:433–437, 1991.PubMedCrossRefGoogle Scholar
  107. 107.
    Sevick, E. M., and R. K. Jain. Blood flow and venous pH of tissue-isolated Walker 256 carcinoma during hyperglycemia.Cancer Res. 48:1201–1207, 1988.PubMedGoogle Scholar
  108. 108.
    Sevick, E. M., and R. K. Jain. Geometric resistance to blood flow in solid tumors perfused ex vivo: Effects of tumor size and perfusion pressure.Cancer Res. 49:3506–3512, 1989.PubMedGoogle Scholar
  109. 109.
    Sevick, E. M., and R. K. Jain. Viscous resistance to blood flow in solid tumors: Effect of hematocrit on intratumor blood viscosity.Cancer Res. 49:3513–3519, 1989.PubMedGoogle Scholar
  110. 110.
    Sevick, E. M., and R. K. Jain. Effect of red blood cell rigidity on tumor blood flow: Increase in viscous resistance during hyperglycemia.Cancer Res. 51:2727–2730, 1991.PubMedGoogle Scholar
  111. 111.
    Sevick, E. M., and R. K. Jain. Measurement of capillary filtration coefficient in a solid tumor.Cancer Res. 51: 1352–1355, 1991.PubMedGoogle Scholar
  112. 112.
    Stohrer, M., Y. Boucher, M. Stangassinger, and R. K. Jain. Oncotic pressure in human tumor xenografts (abstract). American Association for Cancer Research Meeting, Toronto, 1995.Google Scholar
  113. 113.
    Swabb, E. A., J. Wei, and P. M. Gullino. Diffusion and convection in normal and neoplastic tissues.Cancer Res. 34:2814, 1974.PubMedGoogle Scholar
  114. 114.
    Swartz, M. A., D. A. Berk, and R. K. Jain. Transport in lymphatic capillaries. I. Macroscopic measurements using residence time distribution theory.Am. J. Physiol. 270:H324-H329, 1996.PubMedGoogle Scholar
  115. 115.
    Torres-Filho, I. P., M. Leunig, F. Yuan, M. Intaglietta, and R. K. Jain. Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice.Proc. Natl. Acad. Sci. USA 91:2081–2085, 1994.PubMedCrossRefGoogle Scholar
  116. 116.
    Traykov, T. T., and R. K. Jain. Effect of glucose and galactose on red blood cell membrane deformability.Int. J. Microcirc. Clin. Exp. 6:35–44, 1987.PubMedGoogle Scholar
  117. 117.
    Vaupel, P., and R. K. Jain. Tumor Blood Supply and Metabolic Environment. Stuttgart, Germany: Gustav Fischer Verlag, 1991, pp. 1–340.Google Scholar
  118. 118.
    Ward, K. A., and R. K. Jain. Response of tumours to hyperglycemia: Characterization, significance and role in hyperthermia.Int. J. Hyperthermia 4:223–250, 1988.PubMedGoogle Scholar
  119. 119.
    Yamada, S., T. N. Mayadas, F.Yuan, D. D. Wagner, R. O. Hynes, R. J. Melder and R. K. Jain. Rolling in P-selectin deficient mice is reduced but not eliminated in the dorsal skin.Blood 86:3487–3492, 1995.PubMedGoogle Scholar
  120. 120.
    Yamada, S., R. J. Melder, M. Leunig, C. Ohkubo, and R. K. Jain. Leukocyte-rolling increases with age.Blood 86:4707–4708, 1995.PubMedGoogle Scholar
  121. 121.
    Yuan, F., L. T. Baxter, and R. K. Jain. Pharmacokinetic analysis of two-step approaches using bifunctional and enzyme-conjugated antibodies.Cancer Res. 51:3119–3130, 1991.PubMedGoogle Scholar
  122. 122.
    Yuan, F., M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchillin, and R. K. Jain. Vascular permeability in a human tumor xenograft: Molecular size-dependence and cut-off size.Cancer Res. 55:3752–3756, 1995.PubMedGoogle Scholar
  123. 123.
    Yuan F., M. Leunig, D. A. Berk, and R. K. Jain. Microvascular permeability of albumin, vascular surface area, and vascular volume measured in human adenocarcinoma LS174T using dorsal chamber in SCID mice.Microvasc. Res. 45:269–289, 1993.PubMedCrossRefGoogle Scholar
  124. 124.
    Yuan, F., M. Leunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, and R. K. Jain. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft.Cancer Res. 54: 3352–3356, 1994.PubMedGoogle Scholar
  125. 125.
    Yuan, F., H. A. Salehi, Y. Boucher, U. S. Vasthare, R. F. Tuma, and R. K. Jain. Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial windows.Cancer Res. 54:4564–4568, 1994.PubMedGoogle Scholar
  126. 126.
    Zawicki, D. F., R. K. Jain, G. W. Schmid-Schoenbein, and S. Chien. Dynamics of neovascularlization in normal tissue.Microvasc. Res. 21:27–47, 1981.PubMedCrossRefGoogle Scholar
  127. 127.
    Zhu, H., R. Melder, L. Baxter, and R. K. Jain. Physiologically-based kinetic model of effector cell biodistribution in mammals: Implications for adoptive immunotherapy.J. Nuclear Med. in press, 1996.Google Scholar
  128. 128.
    Zlotecki, R. A., L. T. Baxter, Y. Boucher, and R. K. Jain. Pharmacologic modification of tumor blood flow and interstitial fluid pressure in a human tumor xenograft: Network analysis and mechanistic interpretation.Microvasc. Res. 50:429–443, 1995.PubMedCrossRefGoogle Scholar
  129. 129.
    Zlotecki, R. A., Y. Boucher, I. Lee, L. T. Baxter, and R. K. Jain. Effect of angiotensin II induced hypertension on tumor blood flow and interstitial fluid pressure.Cancer Res. 53:2466–2468, 1993.PubMedGoogle Scholar
  130. 130.
    Znati, C. A., Y. Boucher, M. Rosenstein, D. Turner, S. Watkins, and R. K. Jain. Effect of radiation on the interstitial matrix and hydraulic conductivity of tumors (abstract). American Association for Cancer Research Meeting, Washington, DC, 1996.Google Scholar
  131. 131.
    Znati, C. A., K. Karasek, C. Faul, H.-D. Roh, Y. Boucher, M. Rosenstein, S. Kalnicki, R. Buchsbaum, A. Chen, W. D. Bloomer, and R. K. Jain. Interstitial fluid pressure changes in cervical carcinoma patients undergoing radiation therapy: A potential prognostic factor (abstract). Radiation Research Society Meeting, Chicago, 1996.Google Scholar
  132. 132.
    Znati, C. A., M. Rosenstein, Y. Boucher, M. W. Epperly, W. D. Bloomer, and R. K. Jain. Effect of radiation on interstitial fluid pressure and oxygenation in a human colon carcinoma xenograft.Cancer Res. 56:964–968, 1996.PubMedGoogle Scholar

Copyright information

© Biomedical Engineering Society 1996

Authors and Affiliations

  • Rakesh K. Jain
    • 1
  1. 1.Department of Radiation Oncology, Massachusetts General HospitalHarvard Medical SchoolBoston

Personalised recommendations