Advertisement

Metallurgical Transactions

, Volume 3, Issue 9, pp 2381–2389 | Cite as

The tempering of Fe-C lath martensite

  • R. N. Caron
  • G. Krauss
Transformations

Abstract

The changes in matrix structure that occur during tempering of an Fe-0.2C martensite at 400° to 700°C have been investigated. Light and electron metallographic observations show that when tempered, the fine martensitic lath structure coarsens while retaining the elongated packet-lath morphology. The as-quenched hardness 504 Khn and total grain boundary area per unit volume 50,800 cm−1 decrease abruptly at the higher tempering temperatures and in seconds reach relatively stable values that decrease slowly with time. The decrease in low angle boundaries accounts for most of the initial grain boundary area change, while the large angle boundary component of total boundary area decreases gradually with tempering time. Recovery processes are responsible for the initial changes in matrix structure, and carbide boundary pinning suppresses recrystallization until grain growth dominates in the later stages of tempering.

Keywords

Ferrite Martensite Metallurgical Transaction Carbide Particle Boundary Area 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. S. Roberts, B. L. Averbach, and M. Cohen:Trans. ASM, 1953, vol. 45, pp. 576–604.Google Scholar
  2. 2.
    B. S. Lement, B. L. Averbach, and M. Cohen:Trans. ASM, 1954, vol. 46, pp. 851–81.Google Scholar
  3. 3.
    B. S. Lement, B. L. Averbach, and M. Cohen:Trans. ASM, 1955, vol. 47, pp. 291–320.Google Scholar
  4. 4.
    E. Tekin and P. M. Kelly:Precipitation from Iron-Base Alloys, pp. 173–229, Gordon and Breach, New York, 1965.Google Scholar
  5. 5.
    G. R. Speich:Trans. TMS-AIME, 1969, vol. 245, pp. 2553–64.Google Scholar
  6. 6.
    E. D. Hyam and J. Nutting:J. Iron Steel Inst., 1956, vol. 184, pp. 148–65.Google Scholar
  7. 7.
    A. M. Turkalo:Trans. ASM, 1961, vol. 54, pp. 344–54.Google Scholar
  8. 8.
    K. J. Irvine and F. B. Pickering:J. Iron Steel Inst., 1960, vol. 194, pp. 137–53.Google Scholar
  9. 9.
    A. Galibois and A. Dubé:Can. Met. Quart., 1967, vol. 6, pp. 121–36.Google Scholar
  10. 10.
    A. Galibois and A. Dubé:Can. Met. Quart., 1964, vol. 3, pp. 321–43.Google Scholar
  11. 11.
    G. P. Airey, T. A. Hughes, and R. F. Mehl:Trans. TMS-AIME, 1968, vol. 242, pp. 1853–63.Google Scholar
  12. 12.
    T. Mukherjee, W. E. Stumpf, C. M. Sellars, and W. J. McG. Tegart:J. Iron Steel Inst., 1969, vol. 207, pp. 621–31.Google Scholar
  13. 13.
    F. E. Werner, B. L. Averbach, and M. Cohen:Trans. ASM, 1957, vol. 49, pp. 823–41.Google Scholar
  14. 14.
    A. R. Marder and G. Krauss:Trans. ASM, 1967, vol. 60, pp. 651–60.Google Scholar
  15. 15.
    Charles Apple: Ph.D. Dissertation, Lehigh University, 1971.Google Scholar
  16. 16.
    R. P. Smith:Trans. TMS-AIME, 1962, vol. 224, pp. 105–11.Google Scholar
  17. 17.
    A. R. Marder: Ph.D. Dissertation, Lehigh University, 1968.Google Scholar
  18. 18.
    R. N. Caron: Ph.D. Dissertation, Lehigh University, 1970.Google Scholar
  19. 19.
    G. W. Greenwood:The Mechanism of Phase Transformations in Crystalline Solids, pp. 103–10, Inst. of Metals Mono. No. 33, Institute of Metals, London, 1969.Google Scholar
  20. 20.
    K. M. Vedula and R. W. Heckel:Met. Trans., 1970, vol. 1, pp. 9–18.Google Scholar
  21. 21.
    W. E. Stumpf and C. M. Sellars:The Mechanism of Phase Transformations in Crystalline Solids, pp. 120–22, Inst. of Metals Mono. No. 33, Institute of Me- tals, London, 1969.Google Scholar
  22. 22.
    T. Mukherjee and C. M. Sellars:The Mechanism of Phase Transformations in Crystalline Solids, pp. 122–24, Inst. of Metals Mono. No. 33, Institute of Me- tals, London, 1969.Google Scholar
  23. 23.
    J. L. Brimhall, M. J. Klein, and R. A. Huggins:Acta Met., 1966, vol. 14, pp. 459–66.CrossRefGoogle Scholar
  24. 24.
    F. J. Humphreys and J. W. Martin:Acta Met., 1966, vol. 14, pp. 775–81.CrossRefGoogle Scholar
  25. 25.
    P. R. Mould:Acta Met., 1967, vol. 15, pp. 1086–87.CrossRefGoogle Scholar
  26. 26.
    J. E. Hilliard:Recrystallization, Grain Growth, and Textures, pp. 267–86, ASM, Metals Park, Ohio, 1966.Google Scholar
  27. 27.
    D. A. Witmer and G. Krauss:Trans. ASM, 1969, vol. 62, pp. 447–56.Google Scholar
  28. 28.
    J. C. M. Li:Recrystallization, Grain Growth, and Textures, pp. 45–98, ASM, Metals Park, Ohio, 1966.Google Scholar
  29. 29.
    G. Langford and M. Cohen:Trans. ASM, 1969, vol. 62, pp. 623–38.Google Scholar
  30. 30.
    H. Hu:Recovery and Recrystallization of Metals, L. Himmel, ed., pp. 311–78, Gordon and Breach, New York, 1963.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1972

Authors and Affiliations

  • R. N. Caron
    • 1
  • G. Krauss
    • 2
  1. 1.Metals Research LaboratoriesOlin Corp.New Haven
  2. 2.Department of Metallurgy and Materials ScienceLehigh UniversityBethlehem

Personalised recommendations