Catalytic hydrogenation of soybean oil methyl esters and some related compounds

  • John C. BailarJr.
  • Hiroshi Itatani
Technical

Abstract

Mixtures of platinum complexes and tin(II) chloride are effective homogeneous catalysts for the hydrogenation of soybean oil methyl ester, reducing it to the monoene stage only. Hydrogenation and isomerization reactions have been examined under various conditions, using a solvent consisting of 60% benzene and 40% methanol.

The extent of hydrogenation depends upon the temperature (90C>60C>30C) but not upon the pressure (1075 psi as compared with 525 psi). It almost stops after 3 hr, although one double bond remains in the molecule.

After hydrogenation with a catalyst consisting of a mixture of dichloro-bis-triphenylphosphine-platinum(II) and tin(II) chloride, soybean oil methyl ester shows an increase in monoene, a decrease in diene and triene, and formation of conjugatedcis-trans andtrans-trans dienes, but no increase in stearate. Similarly, methyl oleate and methyl linoleate were converted to trans monoene, but not to stearate.

Hydrogenations with mixtures of tetrachloroplatinum(II) ion or hexachloro-platinum(IV) ion and tin(II) chloride were similar to those described above but they form some stearate.

Several other metal ions were studied as replacements for tin. None of them were effective.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Halpern, J., Quart. Rev.10, 463 (1956).CrossRefGoogle Scholar
  2. 2.
    Kwiatek, J., I. L. Mador and J. K. Seyler, “Reaction of Coordinated Ligands and Homogeneous Catalysis”, Advances in Chemistry Series, No. 37, American Chemical Society, Washington, D.C., 1963, p. 201.Google Scholar
  3. 3.
    Waterman, H. I., Rec. Trav. Chim.55, 854 (1936).CrossRefGoogle Scholar
  4. 4.
    Halpern, J., J. F. Harrod and B. R. James, J. Am. Chem. Soc.83, 753 (1961).CrossRefGoogle Scholar
  5. 5.
    Sloan, M. F., A. S. Matlak and D. S. Breslow, J. Am. Chem. Soc.85, 4014 (1963).CrossRefGoogle Scholar
  6. 6.
    Cramer, R. D., R. V. Lindsey, Jr., C. T. Prewitt and U. G. Stolberg, J. Am. Chem. Soc.87, 658 (1965).CrossRefGoogle Scholar
  7. 7.
    Green, M. L. H., Angew. Chem.72, 719 (1960).Google Scholar
  8. 8.
    Fischer, E. O. and H. Werner, Angew. Chem.75, 80 (1963).Google Scholar
  9. 9.
    Mabrouk, A. F., H. J. Dutton and J. C. Cowan, JAOCS41, 153 (1964).Google Scholar
  10. 10.
    Frankel, E. N., Helen M. Peters, E. P. Jones and H. J. Dutton, JAOCS41, 186 (1964); Frankel, E. N., E. P. Jones, and C. A. Glass, Ibid., p. 392.Google Scholar
  11. 11.
    Jamieson, G. S., “Vegetable Fats and Oils”, Reinhold Pub. Corp., New York, New York (1943), p. 393.Google Scholar
  12. 12.
    Hartman, L., JAOCS34, 165 (1957).Google Scholar
  13. 13.
    Keller, R. N., “Inorganic Syntheses”, Vol. 2, John Wiley and Sons, New York, 1946, p. 247.CrossRefGoogle Scholar
  14. 14.
    Bailar, J. C., Jr. and H. Itatani, Inorg. Chem.4, 1618 (1965).CrossRefGoogle Scholar
  15. 15.
    Official and Tentative Methods of the AOCS, Second Edition (Chicago), Cd-14-61.Google Scholar
  16. 16.
    Allen, R. R., JAOCS39, 457 (1962).CrossRefGoogle Scholar
  17. 17.
    Zajew, M. Ibid.37, 130 (1960).CrossRefGoogle Scholar
  18. 18.
    Itatani, H., and J. C. Bailar, Jr., unpublished results.Google Scholar

Copyright information

© The American Oil Chemists' Society 1966

Authors and Affiliations

  • John C. BailarJr.
    • 1
  • Hiroshi Itatani
    • 1
  1. 1.W. A. Noyes Laboratory of ChemistryUniversity of IllinoisUrbana

Personalised recommendations