Advertisement

Metallurgical Transactions A

, Volume 24, Issue 7, pp 1507–1516 | Cite as

A new model for diffusional growth

  • Anders Salwén
Transformations

Abstract

A new model for diffusional growth including massive transformations is presented. The thermodynamic stability of a thin layer at the interface determines if a transformation can occur. A new mass balance relation for the phase transformations at the interface is introduced. The interface velocity is modeled as a function of the interphase structure and of the Gibbs molar free energy difference for the transformation of the layer. The interface compositions are de-termined by the dynamics of the system,i.e., no assumption about the interface composition,e.g., local equilibrium, is made. No special treatment is necessary to cover,e.g., para-equilibrium, as it is automatically included by the general formalism. Transinterphase diffusion is includedvia a simple description. The model can simulate both diffusion control and interface control. The model is demonstrated for a simple model system and the austenite-to-ferrite trans-formation in an Fe-0.11 pct C alloy at 770 °C.

Keywords

Ferrite Austenite Metallurgical Transaction Molar Fraction Bulk Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Zener:J. Appl. Phys., 1949, vol. 20, pp. 950–53.CrossRefGoogle Scholar
  2. 2.
    G.R. Purdy, D.H. Weichert, and J.S. Kirkaldy:Trans. AIME, 1964, vol. 230, pp. 1025–34.Google Scholar
  3. 3.
    R.R. Judd and H.W. Paxton:Trans. AIME, 1968, vol. 242, pp. 206–15.Google Scholar
  4. 4.
    R.A. Tanzilli and R.W. Heckel:Trans. AIME, 1968, vol. 242, pp. 2313–21.Google Scholar
  5. 5.
    J.S. Kirkaldy:Advan. Mater. Res., 1970, vol. 4, pp. 55–100.Google Scholar
  6. 6.
    M. Hillert, K. Nilsson, and L.-E. Törndahl:J. Iron Steel Inst., 1971, Jan., pp. 49–66.Google Scholar
  7. 7.
    D.E. Coates:Metall. Trans., 1973, vol. 4, pp. 2313–25.Google Scholar
  8. 8.
    Mats Hillert:Metall. Trans. A, 1975, vol. 6A, pp. 5–19.Google Scholar
  9. 9.
    E. Randich and J.I. Goldstein:Metall. Trans., 1975, vol. 6A, pp. 1553–60.CrossRefGoogle Scholar
  10. 10.
    J.I. Goldstein and E. Randich:Metall. Trans., 1977, vol. 6A, pp. 105–09.Google Scholar
  11. 11.
    R.C. Sharma, G.R. Purdy, and J.S. Kirkaldy:Metall. Trans., 1979, vol. 10A, pp. 1129–39.Google Scholar
  12. 12.
    J. Ågren:J. Phys. Chem. Sol., 1982, vol. 43, pp. 421–30.CrossRefGoogle Scholar
  13. 13.
    J. Ågren:Acta Metall., 1982, vol. 30, pp. 84–51.Google Scholar
  14. 14.
    M. Hillert and J. Ågren:Proc. Conf. J. Canada, Oct. 22-23, 1987, pp. 1–19.Google Scholar
  15. 15.
    H.I. Aaronson, M. Enomoto, and W.T. Reynolds, Jr.:Proc. Conf. J. Canada, Oct. 22-23, 1987, pp. 20–36.Google Scholar
  16. 16.
    J.A. Nesbitt and R.W. Heckel:Metall. Trans. A, 1987, vol. 18A, pp. 2061–73.Google Scholar
  17. 17.
    K. Inoue, E. Ohmura, and S. Ikuta:Trans. JWRI, 1987, vol. 16, pp. 97–101.Google Scholar
  18. 18.
    J. Ågren:Int. Rep., R. Inst. Technol., 1988, TRITA-MAC-0367, Internal Report Series, Materials Center, Royal Institute of Technology, Stockholm, Sweden.Google Scholar
  19. 19.
    B. Jönsson and J. Ågren:Int. Rep., R. Inst. Technol., 1988, TRITA-MAC-0375.Google Scholar
  20. 20.
    Z. Liu and J. Ågren:Int. Rep., R. Inst. Technol., 1989, TRITA- MAC-0391.Google Scholar
  21. 21.
    L. Höglund, B. Jönsson, and J. Ågren: Int. Rep., R. Inst. Technol., 1990, TRITA-MAC-0444.Google Scholar
  22. 22.
    R.A. Vandermeer:Acta Metall., 1990, vol. 38, pp. 2461–70.CrossRefGoogle Scholar
  23. 23.
    Z. Liu, L. Höglund, B. Jonsson, and J. Ågren:Metall. Trans. A, 1991, vol. 22A, pp. 1745–52.Google Scholar
  24. 24.
    M. Kajihara, C.B. Im, and M. Kikuchi:Proc. Int. Conf. on Stainless Steels '91, Tokyo, 1991.Google Scholar
  25. 25.
    S. Okaguchi and T. Hishimoto:Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 283–90.Google Scholar
  26. 26.
    J. Àgren:Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 291–96.Google Scholar
  27. 27.
    K.J. Lee, J.K. Lee, K.B. Kang, and O. Kwon:Iron Steel Inst. Jpn. Int., 1992, vol. 32, pp. 326–34.Google Scholar
  28. 28.
    J.S. Langer and R.F. Sekerka:Acta Metall., 1975, vol. 23, pp. 1225–37.CrossRefGoogle Scholar
  29. 29.
    M.J. Aziz and T. Kaplan:Ada Metall., 1988, vol. 36, pp. 2335–47.CrossRefGoogle Scholar
  30. 30.
    G.B. Olsen, H.K.D.H. Bhadeshia, and M. Cohen:Ada Metall., 1989, vol. 37, pp. 381–90.CrossRefGoogle Scholar
  31. 31.
    M. Hillert and B. Sundman:Acta Metall., 1976, vol. 24, pp. 731–43.CrossRefGoogle Scholar
  32. 32.
    H. Fredriksson and N. Jacobsson: Int. Rep., R. Inst. Technol., 1988, TRITA-MAC-0376.Google Scholar
  33. 33.
    H. Fredriksson and N. Jacobsson: Int. Rep., R. Inst. Technol., 1992, TRITA-MAC-0490.Google Scholar
  34. 34.
    H.I. Aaronson, T. Furuhara, and M. Enomoto:Scand. J. Metall., 1991, vol. 20, pp. 18–31.Google Scholar
  35. 35.
    J.C. Baker and J.W. Cahn:Solidification, ASM-Metals Park, OH, 1971, p. 35.Google Scholar
  36. 36.
    F. Spaepen and D. Tumbull:Rapidly Quenched Metals, N.J. Grant and B.C. Giessen, eds., MIT Press, Cambridge, MA, 1976, pp. 205–29.Google Scholar
  37. 37.
    K.R. Kinsman and H.I. Aaronson:Transformation and Hardenability in Steels, Climax Molybdenum Co., Ann Arbor, MI, 1967, p. 39.Google Scholar
  38. 38.
    P. Gustafson:Scand. J. Metall., 1985, vol. 14, pp. 259–67.Google Scholar

Copyright information

© The Minerals, Metals and Materials Society, and ASM International 1993

Authors and Affiliations

  • Anders Salwén
    • 1
  1. 1.ASEA Brown Boveri Powdermet ABSweden

Personalised recommendations