Metallurgical Transactions A

, Volume 18, Issue 10, pp 1687–1694 | Cite as

Effect of heat treatment on delayed hydride cracking in Zr-2.5 Wt Pct Nb

  • K. F. Amouzouvi
  • L. J. Clegg
Mechanical Behavior


The effect of heat treatments on delayed hydride cracking (DHC) in Zr-2.5 wt pct Nb has been studied. Crack velocities were measured in hydrided specimens, which were cooled from solution-treatment temperatures at different rates by water-quenching, oil-quenching, liquid-nitrogen quenching, and furnace cooling. The resulting hydride size, morphology, and distributions were examined by optical metallography. It was found that fast cooling rates, which produce very finely dispersed hydrides, result in higher crack growth rates and a stronger dependence of the crack velocity on the applied-stress intensity factor. Also, the incubation period before cracking commences was found to be relatively short for specimens with fine hydrides, whereas specimens with coarse hydrides required considerably longer incubation periods. These results can be explained by rapid growth of preexisting hydrides within the crack-tip plastic zone. In addition, different solution temperatures were used to investigate the effect of the continuity of the grain-boundary phase-phase) on the crack velocity. Transmission electron microscopy was used to examine the structure of this grain-boundary phase. It was found that for heat treatments, which destroyed theβ-phase continuity, the crack velocity was significantly reduced, as would be expected from the theory of enhanced diffusion through grain boundaries.


Hydride Stress Intensity Factor Plastic Zone Crack Growth Rate Crack Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Dutton:Can. Met. Quarterly, 1978, vol. 17, pp. 16–25.Google Scholar
  2. 2.
    D.G. Westlake:Trans. ASM, 1969, vol. 62, pp. 1000–06.Google Scholar
  3. 3.
    H.K. Birnbaum:Scripte Metall., 1976, vol. 10, pp. 747–50.CrossRefGoogle Scholar
  4. 4.
    H. K. Birnbaum, M. Grossbeck, and S. Gahzin:Hydrogen in Metals, I. M. Bernstein and A. W. Thompson, eds., ASM, Metals Park, OH, 1974, pp. 303–23.Google Scholar
  5. 5.
    C.J. Simpson and C. E. Ells:J. Nucl. Mat., 1974, vol. 52, pp. 289–95.CrossRefGoogle Scholar
  6. 6.
    E. C.W. Perryman:Nucl. Energy, 1978, vol. 17, pp. 95–105.Google Scholar
  7. 7.
    R. Dutton and M. P. Puis:Effect of Hydrogen on Behavior of Materials, A.W. Thompson and I. M. Bernstein, eds., Met. Soc. AIME, 1976, pp. 516–28.Google Scholar
  8. 8.
    R. Dutton, K. Nuttall, M. P. Puls, and L. A. Simpson:Metall. Trans. A, 1977, vol. 8A, pp. 1553–62.Google Scholar
  9. 9.
    R. Dutton, C. H. Woo, K. Nuttall, L. A. Simpson, and M. P. Puis:Hydrogen in Metals, Pergamon Press, Oxford, 1978, vol. 1, 3C6, pp. 1–8.Google Scholar
  10. 10.
    L. A. Simpson and M. P. Puls:Metall. Trans. A, 1979, vol. 10A, pp. 1093–1105.Google Scholar
  11. 11.
    L. A. Simpson and K. Nuttall:Zirconium in the Nuclear Industry, ASTM STP 633, 1977, pp. 608–29.Google Scholar
  12. 12.
    M. P. Puis, L. A. Simpson, and R. Dutton:Proc. 5th Canadian Fracture Conference, L. A. Simpson, ed., Pergamon Press, Oxford, 1982, pp.13–25.Google Scholar
  13. 13.
    C.E. Coleman and J.F. R. Ambler:Zirconium in the Nuclear Industry, ASTM STP 633, 1977, pp. 589–607.Google Scholar
  14. 14.
    C.E. Coleman and J.F. R. Ambler:Can. Met. Quarterly, 1978, vol. 17, pp. 81–84.Google Scholar
  15. 15.
    C.E. Coleman and J. F. R. Ambler:Scripta Metall., 1983, vol. 17, pp. 77–82.CrossRefGoogle Scholar
  16. 16.
    M.P. Puls:Acta Metall., 1981, vol. 29, pp. 1961–68.CrossRefGoogle Scholar
  17. 17.
    M.P. Puls:Acta Metall., 1984, vol. 32, pp. 1259–69.CrossRefGoogle Scholar
  18. 18.
    Y. Mishima, T. Okubo, and E. Sano:Metall. Trans., 1971, vol. 2, pp. 1995–97.Google Scholar
  19. 19.
    P. Mayer and C. J. Simpson:Hydrogen in Metals, Proceedings of the 2nd International Congress, 1977, vol. 2, 1D5, pp. 1–6.Google Scholar
  20. 20.
    A. Sawatzky, G. A. Ledoux, R. L. Tough, and C. D. Cann:Proc. Miami Internat. Symp. on Metal-Hydrogen Systems, T. N. Verizoglu, ed., Pergamon Press, Oxford, 1982, pp. 109–20.Google Scholar
  21. 21.
    S.A. Aldridge and B.A. Cheadle:J. Nucl. Mater., 1972, vol. 42, pp. 32–42.CrossRefGoogle Scholar
  22. 22.
    L. A. Simpson and CD. Cann:J. Nucl. Mater., 1984, vol. 126, pp. 70–73.CrossRefGoogle Scholar
  23. 23.
    M. Leger and A. Donner:Can. Met. Quarterly, 1985, vol. 24, pp. 235–43.Google Scholar
  24. 24.
    V. Perovic, G. C. Weatherly, and C. J. Simpson:Acta Metall., 1983, vol. 31, pp. 1381–91.CrossRefGoogle Scholar
  25. 25.
    L. A. Simpson and C .F. Clarke: Report No. AECL 5815, Atomic Energy of Canada Limited, 1978, Pinawa, MB, Canada.Google Scholar
  26. 26.
    C. D. Cann and A. Atrens:J. Nucl. Mater., 1980, vol. 88, pp. 42–50.CrossRefGoogle Scholar
  27. 27.
    D. O. Norwood and N. Kosasch:International Metals Reviews, 1983, vol. 28, pp. 92–121.Google Scholar
  28. 28.
    J. K. Tien, A. W. Thompson, I. M. Bernstein, and R. J. Richards:Metall. Trans. A, 1976, vol. 7A, pp. 821–29.Google Scholar
  29. 29.
    J.F. Ambler: AECL Progress Report (PR-FM-73P) Atomic Energy of Canada Ltd., 1985, Chalk River, ON, Canada.Google Scholar
  30. 30.
    K. F. Amouzouvi and L. J. Clegg: Atomic Energy of Canada Limited, WNRE, Pinawa, MB, Canada, unpublished research, 1986.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1987

Authors and Affiliations

  • K. F. Amouzouvi
    • 1
  • L. J. Clegg
    • 1
  1. 1.Atomic Energy of Canada LimitedWhiteshell Nuclear Research EstablishmentPinawaCanada

Personalised recommendations