Advertisement

Metallurgical Transactions A

, Volume 21, Issue 10, pp 2655–2668 | Cite as

Precipitation reactions and strengthening behavior in 18 Wt Pct nickel maraging steels

  • Vijay K. Vasudevan
  • Sung J. Kim
  • C. Marvin Wayman
Transformations

Abstract

The crystallography, structure, and composition of the strengthening precipitates in maraging steels C-250 and T-250 have been studied utilizing analytical electron microscopy and computersimulated electron diffraction patterns. The kinetics of precipitation were studied by electrical resistivity and microhardness measurements and could be described adequately by the Johnson-Mehl-Avarami equation, with precipitate nucleation occurring on dislocations and growth proceeding by a mechanism in which the dislocations serve as collector lines for solute from the matrix along which pipe diffusion occurs. The strengthening of the Co-free, higher Ti T-250 steel is caused by a refined distribution of Ni3Ti precipitates. High strength is maintained at longer times from the combined effect of a high resistance of these precipitates to coarsening and a small volume fraction of reverted austenite. In the case of the Co-containing, lower Ti C-250 steel, strengthening results from the combined presence of Ni3Ti (initially) and Fe2Mo precipitates (at longer times). Loss of strength at longer times is associated, in part, with overaging and mainly from the larger volume fraction of reverted austenite. The resistance to austenite reversion is dependent on the manner in which the relative nickel content of the martensite matrix is affected by the precipitating phases, and the difference in the reversion tendency between the two steels can be explained on this basis.

Keywords

Austenite Martensite Metallurgical Transaction Aging Time Selected Area Diffraction Pattern 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Floreen:Met. Rev., 1968, vol. 13, pp. 115–28.Google Scholar
  2. 2.
    J.M. Chilton and C.J. Barton:Trans. Q. ASM, 1967, vol. 60, pp. 528–42.Google Scholar
  3. 3.
    B.G. Reisdorf:Trans. Q. ASM, 1963, vol. 56, pp. 783–86.Google Scholar
  4. 4.
    A.J. Baker and P.R. Swann:Trans. Q. ASM, 1964, vol. 57, pp. 1008–11.Google Scholar
  5. 5.
    K. Shimizu and H. Okamoto:Trans. Jpn. Inst. Met., 1971, vol. 12, pp. 270–79.Google Scholar
  6. 6.
    G.P. Miller and W.I. Mitchell:J. Iron Steel Inst., 1965, vol. 20, pp. 899–904.Google Scholar
  7. 7.
    H.L. Marcus, L.H. Schwartz, and M.E. Fine:Trans. Q. ASM, 1966, vol. 59, p. 468.Google Scholar
  8. 8.
    J.B. Lecomte, C. Servant, and G. Cizeron:J. Mater. Sci., 1985, vol. 20, pp. 3339–52.CrossRefGoogle Scholar
  9. 9.
    D.M. Vanderwalker:Metall. Trans. A, 1987, vol. 18A, pp. 1191–94.Google Scholar
  10. 10.
    D.M. Vanderwalker: inMaraging Steels—Recent Developments and Applications, TMS-AIME, Warrendale, PA, 1988, pp. 255–68.Google Scholar
  11. 11.
    G. Cliff and G.W. Lorimer, Jr.:J. Microsc, 1975, vol. 103, pp. 203–07.Google Scholar
  12. 12.
    D.T. Peters and C.R. Cupp:Trans. TMS-AIME, 1966, vol. 236, pp. 1420–29.Google Scholar
  13. 13.
    J. Burke: inThe Kinetics of Phase Transformations in Metals, Pergamon Press, New York, NY, 1965, pp. 36–60.Google Scholar
  14. 14.
    V.K. Vasudevan, S.J. Kim, and C.M. Wayman: inMaraging Steels—Recent Developments and Applications, TMS-AIME, Warrendale, PA, 1988, pp. 283–93.Google Scholar
  15. 15.
    A. Taylor and R.W. Floyd:Acta Crystallogr., 1950, vol. 3, pp. 285–89.CrossRefGoogle Scholar
  16. 16.
    P. Villars and L.D. Calvert: inPearson’s Handbook of Crystallographic Data for Inter-metallic Phases, ASM, Metals Park, OH, 1985, vol. 3, p. 2905.Google Scholar
  17. 17.
    A.T. Davenport:J. Iron Steel Inst., 1968, vol. 206, pp. 499–501.Google Scholar
  18. 18.
    S.R. Keown and D.J. Dyson:J. Iron Steel Inst., 1966, vol. 204, pp. 832–36.Google Scholar
  19. 19.
    M.A. Krishtal: inDiffusion Processes in Iron Alloys, translated from Russian by the Israel Program for Scientific Translations Ltd., Jerusalem, Israel, 1970, pp. 175–203.Google Scholar
  20. 20.
    C.J. Bechtoldt and H.C. Vacher:J. Res. Nat. Bur. Stand. (U.S.), 1957, vol. 58, p. 7.Google Scholar
  21. 21.
    A.F. Yedneral and M.D. Perkas:Fiz. Met. Metalloved., 1969, vol. 28, pp. 862–71.Google Scholar
  22. 22.
    S. Saito and P. Beck:Trans. TMS-AIME, 1959, vol. 215, pp. 938–41.Google Scholar
  23. 23.
    R.K. Pitler and G.S. Ansell:Trans. Q. ASM, 1964, vol. 56, pp. 220–46.Google Scholar
  24. 24.
    K. Detert:Trans. Q. ASM, 1966, vol. 59, pp. 262–76.Google Scholar
  25. 25.
    S. Floreen and R.F. Decker:Trans. Q. ASM, 1962, vol. 55, p. 518.Google Scholar
  26. 26.
    S. Floreen:Trans. Q. ASM, 1964, vol. 57, p. 38.Google Scholar
  27. 27.
    J.W. Christian: inThe Theory of Phase Transformations in Metals and Alloys, Pergamon Press, New York, NY, 1965, pp. 471–95.Google Scholar
  28. 28.
    A.H. Cottrell and B.A. Bilby:Proc. Phys. Soc, 1949, vol. A62, p. 49.Google Scholar
  29. 29.
    S. Harper:Phys. Rev., 1951, vol. 83, p. 209.CrossRefGoogle Scholar
  30. 30.
    J.W. Cahn:Acta Metall., 1957, vol. 5, p. 169.CrossRefGoogle Scholar
  31. 31.
    C.C. Dollins:Acta Metall., 1970, vol. 18, p. 1209.CrossRefGoogle Scholar
  32. 32.
    R. Gomez-Ramirez and G.M. Pound:Metall. Trans., 1973, vol. 4, pp. 1563–70.Google Scholar
  33. 33.
    L. Katgerman and J. Van Liere:Acta Metall., 1978, vol. 26, pp. 361–67.CrossRefGoogle Scholar
  34. 34.
    K.C. Russell and H.I. Aaronson:J. Mater. Sci., 1975, vol. 10, pp. 1991–99.CrossRefGoogle Scholar
  35. 35.
    R.D. Garwood and R.D. Jones:J. Iron Steel Inst., 1966, vol. 204, pp. 512–19.Google Scholar
  36. 36.
    H. Kreye:Z. Metallkd., 1970, vol. 61, pp. 108–12.Google Scholar
  37. 37.
    R.M. Allen and J.B. Vander Sande: inSolid → Solid Phase Transformations, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., TMS-AIME, Warrendale, PA, 1982, pp. 655–59.Google Scholar
  38. 38.
    D.T. Peters and S. Floreen:Trans. AIME, 1969, vol. 245, pp. 2021–26.Google Scholar
  39. 39.
    A. Kelly and R.B. Nicholson:Prog. Mater. Sci., 1963, vol. 10, pp. 149–391.Google Scholar
  40. 40.
    Stephen Spooner, H.J. Rack, and David Kalish:Metall. Trans., 1971, vol. 2, pp. 2306–08.Google Scholar
  41. 41.
    B.G. Reisdorf and A.J. Baker:Air Force Materials Laboratory Tech. Rep., Wright-Patterson Air Force Base, Dayton, OH, 1965, no. AFML-TR-64-390.Google Scholar
  42. 42.
    G.S. Ansell and F.V. Lenel:Acta Metall., 1960, vol. 8, pp. 612–16.CrossRefGoogle Scholar
  43. 43.
    G.S. Ansell:Acta Metall., 1961, vol. 9, pp. 518–19.CrossRefGoogle Scholar
  44. 44.
    S. Floreen and A.M. Bayer: inMaraging Steels—Recent Developments and Applications, TMS-AIME, Warrendale, PA, 1988, pp. 39–54.Google Scholar
  45. 45.
    R.F. Decker: inSource Book on Maraging Steels, ASM, Metals Park, OH, 1979, p. 358.Google Scholar
  46. 46.
    D.T. Peters:Trans. Q. ASM, 1968, vol. 61, pp. 62–67.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1990

Authors and Affiliations

  • Vijay K. Vasudevan
    • 1
  • Sung J. Kim
    • 2
  • C. Marvin Wayman
    • 3
  1. 1.Department of Materials Science and EngineeringUniversity of CincinnatiCincinnati
  2. 2.Korea Institute of Machinery and MetalsKyungnamRepublic of Korea
  3. 3.Department of Materials Science and EngineeringUniversity of IllinoisUrbana

Personalised recommendations