Advertisement

Journal of Thermal Spray Technology

, Volume 5, Issue 4, pp 445–456 | Cite as

Rapid solidification and microstructure development during plasma spray deposition

  • S. Sampath
  • H. Herman
Reviewed Paper

Abstract

Plasma spray processing is a well-established method for forming protective coatings and free-standing shapes from a wide range of alloys and ceramics. The process is complex, involving rapid melting and high-velocity impact deposition of powder particles. Due to the rapid solidification nature of the process, deposit evolution also is complex, commonly leading to ultrafine-grained and metastable microstruc-tures. The properties of a plasma-sprayed deposit are directly related to this complex microstructure. This paper examines the solidification dynamics and the resultant microstructures in an effort to estab-lish a processing/microstructure relationship. Existing models in the literature developed for splat coo-ling have been extended and applied for examining the rapid solidification process during plasma spraying. Microstructural features of the splats that are produced by individual impinging droplets are examined through scanning and transmission electron microscopy. The relation of dimensions and mor-phologies of these individual splats to the consolidated deposit microstructure is considered. In addition, the distinguishing features in the solidification and microstructural development between air plasma spraying and vacuum plasma spraying are explored, and a unified model is proposed for splat solidifica-tion and evolution of the microstructure.

Keywords

electron microscopy metastable phases microstructure development rapid solidification texture 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Sampath and H. Herman, Plasma Spray Forming Metals, Intermetal- lics and Ceramics,J. Met., Vol 45 (No. 7), 1993, p 42–49Google Scholar
  2. 2.
    S. Safai and H. Herman, Plasma Sprayed Materials,Treat. Mater. Sci. Technol., Vol 20,1981, p 183–214Google Scholar
  3. 3.
    M. Moss, Dispersion Hardening in AI-V by Plasma Jet Spray Quenching,Acta Metall.,Vol 16,1968, p 321–326CrossRefGoogle Scholar
  4. 4.
    K.D. Krishnananda and R.W. Cahn, Properties of Plasma Sprayed Aluminum-Copper Alloys,Proc. 2nd Int. Conf. Rapid Quenching, Section I, B.C. Giessen and N.J. Grant, Ed., 1976, p 67-75Google Scholar
  5. 5.
    B.C. Giessen, M.N. Madhava, R.J. Murphy, R. Ray, and J. Surette, Sheet Production of an Amorphous Zr-Cu Alloy by Plasma Spray Quenching,Metall. Trans. A, Vol 8A, 1977, p 364–366Google Scholar
  6. 6.
    S.K. Das, E.M. Norin, and R.L. Bye, Ni-Mo-Cr-B Alloys: Corrosion Resistant Amorphous Hard Facing Coatings, Rapidly Solidified Metastable Materials,MRS Symp. Proc, Vol 28, B.H. Rear and M. Cohen, Ed., Materials Research Society, 1984, p 233–237Google Scholar
  7. 7.
    V. Panchanathan, C.L. Tsai, and S. Whang, Rapidly Solidified Amorphous and Crystalline Alloys,MRS Symp. Proc, Vol 8, B.H. Rear, B.C. Giessen, and M. Cohen, Ed., Materials Research Society, 1982, p 137–141Google Scholar
  8. 8.
    S. Sampath, B. Katz, and H. Herman, Vacuum Plasma Sprayed Hard Coatings,Mém. Étud. Sci. Rev. Métall., Vol 88, May 1991, p 289–294Google Scholar
  9. 9.
    B. Gudmundsson and B.E. Jacobson, Microstructure and Erosion Resistance of Vacuum Plasma Sprayed CoNiCrAlY/Al2O3 Composite Coatings,Mat. Sci. Eng., Vol A108,1989, p 87–95Google Scholar
  10. 10.
    H. Takigawa, M. Hirata, M. Koga, M. Itoh, and K. Takeda, Applications of Hard Coatings by Low Pressure Plasma Spray,Surf. Coat. Technol.1, Vol 39/40,1989, p 127–134CrossRefGoogle Scholar
  11. 11.
    S. Sampath and H. Herman, Microstructures of Vacuum Plasma Sprayed Coatings,Thermal Spray: Advances in Coating Technology, D.L. Houck, Ed., ASM International, 1988, p 1-7Google Scholar
  12. 12.
    S. Sampath, B. Gudmundsson, R. Tiwari, and H. Herman, Plasma Spray Consolidation of Ni-Al Intermetallics,Thermal Spray Research and Applications, T. Bernecki, Ed., ASM International, 1990, p 357-362Google Scholar
  13. 13.
    R. Tiwari, S. Sampath, and H. Herman, Plasma Spray Consolidation of High Temperature Composites,Mat. Sci. Eng., VolA144,1991,p 127–131Google Scholar
  14. 14.
    M.R. Jackson, J.R. Rairden, J.S. Smith, and R.W. Smith, Production of Metallurgical Structures by Rapid Solidification Plasma Deposition,J. Met., Vol 33 (No. 11), 1981, p 23–27Google Scholar
  15. 15.
    R.W. Smith, D.V. Rigney, J.S. Smith, and J.R. Rairden, Plasma Deposition Effects on Structures and Properties of RSPD Alloys,Rapid Solidification Processing: Principles and Technologies, Vol III, R. Mehrabian, Ed., National Bureau of Standards, 1982, p 468–473Google Scholar
  16. 16.
    A.M. Johnson, J.S. Keim, R.W. Smashey, D.V. Rigney, and T.G. Wakeman, Aircraft Engine Gas Turbine Component Fabrication Concepts using RSPD,Rapid Solidification Processing: Principles and Technologies, Vol III, R. Mehrabian, Ed., National Bureau of Standards, 1982, p 650–661Google Scholar
  17. 17.
    T.L. Cheeks, M.E. Glicksman, M.R. Jackson, and E.L. Hall, Temperature Effects on Plasma Deposition of Ni-base Materials,Rapid Solidification Processing: Principles and Technologies, Vol III, R. Mehrabian, Ed., 1982, p 118–123Google Scholar
  18. 18.
    A.M. Ritter and M.R. Jackson, Microstructural Characterization of RSPD Structures,Rapid Solidification Processing: Principles and Technologies, Vol III, R. Mehrabian, Ed., National Bureau of Standards, 1982, p 118Google Scholar
  19. 19.
    E. Pfender, Fundamental Studies Associated with the Plasma Spray Process,Surf. Coat. Technol, Vol 34,1988,p 1–14CrossRefGoogle Scholar
  20. 20.
    A. Vardelle, M. Vardelle, R. McPherson, and P. Fauchais, Study of the Influence of Particle Temperature and Velocity Distribution within a Plasma Jet Coating Formation,Proc. 9th Int. Thermal Spray Conf, The Hague, Netherlands, 1980, p 155–161Google Scholar
  21. 21.
    J.M. Houben, “Relationship of the Adhesion of Plasma Sprayed Coatings to the Process Parameters: Size, Velocity and Heat Content of the Spray Particles,” Ph.D. thesis. Technische Universiteit Eindhoven, Eindhoven, Netherlands, Dec 1988Google Scholar
  22. 22.
    R.C. Dykhuizen, Review of Impact and Solidification of Molten Thermal Spray Droplets,J. Therm. Spray Technol., Vol 3(No. 4), 1994, p 351–361Google Scholar
  23. 23.
    M. Vardelle, A. Vardelle, A.C. Leger, P. Fauchais, and D. Gobin, Influence of Particle Parameters at Impact on Splat Formation and Solidifi- cation in Plasma Spraying Process,J. Therm. Spray Technol., Vol 4 (No. 1), 1994, p 50–58Google Scholar
  24. 24.
    C. Moreau, P. Gougeon, and M. Lamontagne, Influence of Substrate Preparation on the Flattening and Cooling of Plasma Sprayed Particles,J. Therm. Spray Technol., Vol 4 (No. 1), 1994, p 25–33Google Scholar
  25. 25.
    H. Herman, Plasma Sprayed Coatings,Sci. Am. Vol 256 (No. 9), Sept 1988,p 112–115CrossRefGoogle Scholar
  26. 26.
    V. Wilms, Ph.D. thesis. State University of New York, Stony Brook, NY, 1978Google Scholar
  27. 27.
    C. Moreau, P. Cielo, M. Lamontagne, S. Dallaire, J.C. Krapez, and M. Vardelle, Temperature Evolution of Plasma Sprayed Niobium Particles Impacting on a Substrate,Surf. Coat. Technol., Vol 46, 1991, p 173–187CrossRefGoogle Scholar
  28. 28.
    C. Moreau, P. Cielo, and M. Lamontagne, Influence of Coating Thickness on the Cooling Rates of Plasma Sprayed Particles Impinging on a Substrate,Surf. Coat. Technol., Vol 53, 1992,p 107–114CrossRefGoogle Scholar
  29. 29.
    P. Duwez, Structure and Properties of Alloys Rapidly Quenched from the Liquid State,Trans. ASM, Vol 60,1967, p 607–633Google Scholar
  30. 30.
    S. Sampath, “Rapid Solidification during Plasma Spraying,” Ph.D. thesis, State University of New York, Stony Brook, NY, 1989Google Scholar
  31. 31.
    M. Cohen, B.H. Kear, and R. Mehrabian, Rapid Solidification Processing—An Outlook,Rapid Solidification Processing: Principles and Technologies, Vol III, R. Mehrabian, B.H. Kear, and M. Cohen, Ed., Claitors, 1980, p 1–23Google Scholar
  32. 32.
    H. Matyja, B.C. Giessen, and N.J. Grant, The Effect of Cooling Rate on the Dendrite Arm Spacing of Splat Cooled Aluminum Alloys,J. Inst. Met., Vol 96,1968, p 30–32Google Scholar
  33. 33.
    H. Jones, Experimental Methods in Rapid Quenching From the Melt,Treat. Mater. Sci. Technol., Vol 20,1981, p 26–71Google Scholar
  34. 34.
    K. Murakami, T. Okamoto, Y. Miyamoto, and S. Nakazono, Rapid Solidification and Self-Annealing of Fe-C-Si Alloys by Low Pressure Plasma Spraying,Mat. Sci. Eng., Vol A117,1989,p207–214Google Scholar
  35. 35.
    R.C. Ruhl, Cooling Rates in Splat Cooling,Mat. Sci. Eng., Vol 1,1968, p313–320CrossRefGoogle Scholar
  36. 36.
    S.C. Huang, R.P. Laforce, A.M. Ritter, and R.P. Goehner, Rapid Solidification Characteristics in Melt Spinning a Ni-base Superalloy,Metall. Trans. A, Vol 16A, 1985, p 1773Google Scholar
  37. 37.
    P. Predecki, A.W. Mullendore, and N.J. Grant, A Study of Splat Cooling Technique,Trans. Metall. Soc. AIME, Vol 233,1965, p 1581–1586Google Scholar
  38. 38.
    D.R. Harbur, J.W. Anderson, and W.J. Maramen, Rapid Quenching Drop Smasher,Trans. Metall. Soc. AIME, Vol 233,1965, p 1581–1586Google Scholar
  39. 39.
    T.R. Anantharaman and C. Surayanarayana, Rapidly Solidified Metals,Key Eng. Mater., Vol 17,1987, p 80–86Google Scholar
  40. 40.
    P.H. Shingu and R. Ozaki, Solidification Rate in Rapid Conduction Cooling,Metall. Trans. A, Vol 6A, 1975, p 33–37Google Scholar
  41. 41.
    M. Cohen and R. Mehrabian, Some Fundamental Aspects of Rapid Solidification,Rapid Solidification Processing: Principles and Technologies, Vol III, R. Mehrabian, Ed., National Bureau of Standards, 1980, p 1-26Google Scholar
  42. 42.
    S. Safai and H. Herman, Microstructural Investigation of Plasma Sprayed Al-Coatings,Thin Solid Films, Vol 45,1977, p 295–307CrossRefGoogle Scholar
  43. 43.
    R.W.Cahn,Recrystallization,Grain Growth and Textures, American Society for Metals, 1966, p 99-100Google Scholar
  44. 44.
    C.S. Barret and T.B. Massalski,Structure of Metals, 3rd ed., Pergamon Press, 1980Google Scholar
  45. 45.
    E. Hornbergen, Phase-Structure and Micro-Structure in Rapidly Quenched Alloys,Rapidly Quenched Metals, S. Steeb and H. Warli- mont, Ed., Elsevier, 1985, p 785-796Google Scholar

Copyright information

© ASM International 1996

Authors and Affiliations

  • S. Sampath
    • 1
  • H. Herman
    • 1
  1. 1.Thermal Spray Laboratory, Department of Materials Science and EngineeringState University of New YorkStony BrookUSA

Personalised recommendations