Residual Stresses in Thermal Spray Coatings and Their Effect on Interfacial Adhesion: A Review of Recent Work

  • T. W. Clyne
  • S. C. Gill
Reviewed Paper

Abstract

An overview is presented of the development of residual stresses in thermal spray coatings and their ef-fects on interfacial debonding. The main experimental techniques for measurement of residual stresse are briefly described, with particular attention given to the method of continuous curvature monitoring. Boundary conditions satisfied by all residual stress distributions are identified and expressions derived for the curvatures and stress distributions arising from a uniform misfit strain between coating and sub-strate.It is noted that stress distributions in thick coatings rarely correspond to the imposition of such a uniform misfit strain, so that recourse to numerical methods becomes essential for quantitative predic-tion of stress distributions. Relationships are presented between residual stresses and corresponding strain energy release rates during interfacial debonding. The effect on this of superimposing stresses from an externally applied load is outlined. The initiation of debonding is then considered, covering edge effects and other geometrical considerations. Finally, some specific case histories are briefly outlined to illustrate how the various theoretical concepts involved relate to industrial practice.

References

  1. 1.
    M.K. Hobbs and H. Reiter, Residual Stresses in ZrO2-8%Y2O3 Plasma-Sprayed Thermal Barrier Coatings,Surf. Coat. Technoi, Vol 34,1988, p 33–42CrossRefGoogle Scholar
  2. 2.
    H. Zhuang and C. Gu, A Study on Residual Stress of ZrO + MgO Plasma Sprayed Coating,Proc. 1st Plasma-Technik Symp., H. Esch- nauer, P. Huber, A.R. Nicoll, and S. Blum-Sandmeier, Ed., Plasma- Technik, Wohlen, Switzerland, 1988, p 277–284Google Scholar
  3. 3.
    U. Selvadurai and W. Reimers, Characterisation of Phase Composition and Residual Stress State in Plasma Sprayed Ceramic Coatings,High Performance Ceramic Films and Coatings, P. Vincenzini, Ed., Elsevier, Amsterdam, 1990, p 319–328Google Scholar
  4. 4.
    D. Stover, D.A. Jager, and H.G. Schutz, Residual Stresses in Low Pressure Plasma Sprayed Chromia Coatings,Proc. 4th National Thermal Spray Conf., T.F. Bernecki, Ed., Materials Information Society, 1991, p 215-219Google Scholar
  5. 5.
    R. Kingswell, K.T. Scott, and B. Sorensen, Measurement of Residual Stress in Plasma Sprayed Ceramic Coatings,Proc. 2nd Plasma-Technik Symp., S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A.R. Nicoll, Ed., Plasma-Technik, Wohlen, Switzerland, 1991, p 377–388Google Scholar
  6. 6.
    S.R. Brown, I.G. Turner, and H. Reiter, Residual Stress Measurement in Thermal Sprayed Hydroxyapatite Coatings,J. Mater. Sci. Mater. Med., Vol 5,1994, p 756–759CrossRefGoogle Scholar
  7. 7.
    S.C. Gill and T.W. Clyne, Investigation of Residual Stress Generation during Thermal Spraying by Continuous Curvature Measurement,Thin Solid Films, Vol 250,1994, p 172–180CrossRefGoogle Scholar
  8. 8.
    D.S. Rickerby, K.T. Scott, and G. Eckold, Analysis of the Residual Stresses in Plasma Sprayed Coatings,Proc. 1st Plasma-Technik Symp., H. Eschnauer, P. Huber, A.R. Nicoll, and S. Blum-Sandmeier, Ed., Plasma-Technik, Wohlen, Switzerland, 1988, p 267–276Google Scholar
  9. 9.
    R. Elsing, O. Knotek, and U. Baiting, Calculation of Residual Thermal Stress in Plasma-Sprayed Coatings,Surf. Coat. Technol., Vol 43/44, 1990, p 416–425CrossRefGoogle Scholar
  10. 10.
    S. Takeuchi, M. Ito, and K. Takeda, Modelling of Residual Stress in Plasma-Sprayed Coatings: Effect of Substrate Temperature,Surf. Coat. Technoi, Vol 43/44,1990, p 426–435CrossRefGoogle Scholar
  11. 11.
    S.G. Gill, “Residual Stresses in Plasma Sprayed Deposits,” Ph.D. thesis, University of Cambridge, U.K., 1991Google Scholar
  12. 12.
    J.D. Lee, H.V. Ra, K.T. Hong, and S.K. Hur, Analysis of Deposition Phenomena and Residual Stress in Plasma Spray Coatings,Surf. Coat. Technol., Vol 56,1992, p 27–37CrossRefGoogle Scholar
  13. 13.
    D.J. Greving, E.F. Rybicki, and J.R. Shadley, Residual Stress Evaluations of Thermal Spray Coatings by a Modified Layer Removal Method,Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, Ed., ASM International, 1994, p 647-662Google Scholar
  14. 14.
    R. Elsing, O. Knotek, and U. Baiting, The Influence of Physical Properties and Spraying Parameters on the Creation of Residual Thermal Stresses during the Spraying Process,Surf. Coat Technol., Vol 41, 1990, p 147–156CrossRefGoogle Scholar
  15. 15.
    S.C. Gill and T.W. Clyne, Property Data Evaluation for the Modelling of Residual Stress Development during Vacuum Plasma Spray Deposition,1 st European Conf. Advanced Materials and Processes (Euro- mat ’89), H. Exner, Ed., Deutsche Gesellschaft für Metallkunde, Oberursel, Germany, 1990, p 1221–1230Google Scholar
  16. 16.
    E. Gheeraert, A. Deneuville, and A.M. Bonnot, Defects and Stress Analysis of the Raman Spectrum of Diamond Films,Diamond Related Mater, Vol 1, 1992, p 525–528CrossRefGoogle Scholar
  17. 17.
    J. Pina, A.M. Dias, V. Costa, A. Goncales, M. Zaouali, and S.L. Lebrun, Residual Stresses in Plasma Sprayed Coatings,Proc. 2nd Plasma- Technik Symp., S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A.R. Nicoll, Ed., Plasma-Technik, Wohlen, Switzerland, 1991, p 99–108Google Scholar
  18. 18.
    M.T. Hutchings, Neutron Diffraction Measurement of Residual Stress Fields: Overview and Points for Discussion,Measurement of Residual and Applied Stress Using Neutron Diffraction, M.T. Hutchings and A.D. Krawitz, Ed., Kluwer Academic Publishers, 1992, p 3-20Google Scholar
  19. 19.
    I.B. Harris, J. Wright, D. Wang, L. Edwards, M.W. Johnson, and P.J. Withers, Surface Stress Measurements Made Using Neutron Diffraction,J. Strain Anal., in pressGoogle Scholar
  20. 20.
    P. Pantucek, E. Lugscheider, and U. Miller, Influence of Surface Temperature during Plasma Spraying on Residual Stresses in TBCs,Proc. 2nd Plasma-Technik Symp., S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A. Nicoll, Ed., Plasma-Technik, Wohlen, Switzerland, 1991, p 143–150Google Scholar
  21. 21.
    J. Lu, A. Niku-Lari, and J.F. Flavenot, Recents Developpements de la Mesure des Contraintes Residuelles par Percage Incremental,Matér Tech. (Paris), 1985, p 709-718 (in French)Google Scholar
  22. 22.
    T.W. Clyne, Residual Stresses in Surface Coatings and Their Effects on Interfacial Debonding,Key Eng. Mater., Vol 116/7,1996, p 307–330Google Scholar
  23. 23.
    N.J. Salamon and C.B. Masters, Bifurcation in Isotropic Thin Film/Substrate Plates,Int. J. Solids Struct., Vol 32,1995, p 473–481CrossRefGoogle Scholar
  24. 24.
    S.J. Howard, Y.C. Tsui, and T.W. Clyne, The Effect of Residual Stresses on the Debonding of Coatings, Part I: A Model for Delamination at a Bi- material Interface,Acta Metall. Mater., Vol 42,1994, p 2823–2836CrossRefGoogle Scholar
  25. 25.
    S. Kuroda, T. Kukushima, and S. Kitahara, In Situ Measurement of Coating Thickness during Thermal Spraying Using an Optical Displacement Transducer,J. Vac. Sci. Technol, Vol A5,1987, p 82–87Google Scholar
  26. 26.
    S. Kuroda, T. Kukushima, and S. Kitahara, Simultaneous Measurement of Coating Thickness and Deposition Stress during Thermal Spraying,Thin Solid Films, Vol 164,1988, p 157–163CrossRefGoogle Scholar
  27. 27.
    S. Gill and T.W. Clyne, Thermomechanical Modelling of the Development of Residual Stress during Thermal Spraying,Proc. 2nd Plasma- Technik Symp., S. Blum-Sandmeier, P. Huber, A. Nicoll, and H. Eschnauer, Ed., Plasma-Technik, Wohlen, Switzerland, 1991, p 227–238Google Scholar
  28. 28.
    S.C. Gill and T.W. Clyne, Residual Stress Modelling and Characterisation of Thermally Sprayed Ceramic Coatings,High Performance Ceramic Films and Coatings, P. Vincenzini, Ed., Elsevier, Amsterdam, 1991, p 339–352Google Scholar
  29. 29.
    S.C. Gill and T.W. Clyne, The Effect of Substrate Temperature and Thickness on Residual Stresses in Plasma Sprayed Deposits during Thermal Spraying,2nd European Conf. Advanced Materials and Processes (Euromat ’91), T.W. Clyne and P.J. Withers, Ed., Institute of Materials, 1992, p 289-297Google Scholar
  30. 30.
    S.C. Gill and T.W. Clyne, Stress Distributions and Material Response in Thermal Spraying of Metallic and Ceramic Deposits,Metall. Trans. B, Vol 21B, 1990, p 377–385Google Scholar
  31. 31.
    T.W. Clyne and S.C. Gill, Heat Flow and Thermal Contraction during Plasma Spray Deposition,Heat Transfer in Manufacturing and Processing of New Materials, I. Tanasawa, Ed., Hemisphere, 1991,p33-48Google Scholar
  32. 32.
    Y.C. Tsui, S.C. Gill, and T.W. Clyne, Simulation of the Effect of Creep on the Stress Fields during Thermal Spraying onto Titanium Substrates,Surf. Coat. Technol., Vol 64,1994, p 61–68CrossRefGoogle Scholar
  33. 33.
    S. Kuroda and T.W. Clyne, The Quenching Stress in Thermally Sprayed Coatings,Thin Solid Films, Vol 200,1991, p 49–66CrossRefGoogle Scholar
  34. 34.
    S. Kuroda, T. Fukushima, and S. Kitahara, Significance of the Quenching Stress in the Cohesion and Adhesion of Thermally Sprayed Coatings,13th Int. Conf. Thermal Spraying, C.C. Berndt, Ed., ASM International, 1992, p 903-909Google Scholar
  35. 35.
    L. Pawlowski,The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons, Chichester, U.K., 1995Google Scholar
  36. 36.
    S. Kuroda and T.W. Clyne, The Origin and Quantification of the Quenching Stress Associated with Splat Cooling during Spray Deposition,Proc. 2nd Plasma-Technik Symp., H. Eschnauer, P. Huber, A. Nicoll, and S.B. Sandmeier, Ed., Plasma-Technik, Wohlen, Switzerland, 1991, p 273–284Google Scholar
  37. 37.
    S. Kuroda and T.W. Clyne, The Quenching Stresses in Thermally Sprayed Coatings,Thin Solid Films, Vol 200,1991, p 49–66CrossRefGoogle Scholar
  38. 38.
    S.C. Gill and T.W. Clyne, Monitoring of Residual Stress Generation during Thermal Spraying by Curvature Measurements,Thermal Spray Industrial Applications, C.C. Berndt and S. Sampath, Ed., ASM International, 1994,p581-586Google Scholar
  39. 39.
    D.S. Rickerby, A Review of the Methods for the Measurement of Coating-Substrate Adhesion,Surf. Coat. Technol., Vol 36, 1988, p 541–557CrossRefGoogle Scholar
  40. 40.
    M.S. Hu, M.D. Thouless, and A.G. Evans, The Decohesion of Thin Films from Brittle Substrates,Acta Metall., Vol 36,1988, p 1301–1307CrossRefGoogle Scholar
  41. 41.
    J.R. Rice, Elastic Fracture Mechanics Concepts for Interfacial Cracks,J. Appl. Mech. (Trans. ASME), Vol 55,1988, p 98–103Google Scholar
  42. 42.
    J.W. Hutchinson, “Mixed Mode Fracture Mechanics of Interfaces,” Harvard Technical Report Mech-139, Division of Applied Sciences, Harvard University, 1989Google Scholar
  43. 43.
    M.-Y. He and J.W. Hutchinson, Kinking of a Crack out of an Interface,J. Appl. Mech., Vol 56, 1989, p 270–278CrossRefGoogle Scholar
  44. 44.
    A.G. Evans and J.W. Hutchinson, Effects of Non-planarity on the Mixed Mode Fracture Resistance of Bimaterial Interfaces,Ada Met- all. Vol 37,1989, p 909–916Google Scholar
  45. 45.
    Z. Suo and J.W. Hutchinson, Interface Crack between Two Elastic Layers,Int. J. Fract., Vol 43,1990, p 1–18CrossRefGoogle Scholar
  46. 46.
    A.G. Evans, M. Rühle, B.J. Dalgleish, and P.G. Charalambides, The Fracture Energy of Bimaterial Interfaces,Mater. Sci. Eng., Vol A126, 1990, p 53–64Google Scholar
  47. 47.
    H.M. Jensen, The Blister Test for Interface Toughness Measurement,Eng. Fract. Mech., Vol 40, 1991, p 475–486CrossRefGoogle Scholar
  48. 48.
    A. Bartlett, A.G. Evans, and M. Rühle, Residual Stress Cracking of Metal/Ceramic Bonds,Acta Metall. Mater., Vol 39,1991, p 1579–1585CrossRefGoogle Scholar
  49. 49.
    S.J. Howard and T.W. Clyne, Surface Preparation of Titanium for Vacuum Plasma Spraying and Its Effect on Substrate/Coating Interfacial Fracture Toughness,Composites, Vol 24,1993, p 603–610CrossRefGoogle Scholar
  50. 50.
    V. Tvergaard and J.W. Hutchinson, Toughness of an Interface along a Thin Ductile Layer Joining Elastic Solids,Philos. Mag. A, Vol 70, 1994, p 641–656Google Scholar
  51. 51.
    Y.C. Tsui, S.J. Howard, and T.W. Clyne, Application of a Model for the Effect of Residual Stresses on Debonding of Coatings under Applied Loads,Advances in Inorganic Films and Coatings, P. Vincenzini, Ed., Elsevier, 1995, p 19-26Google Scholar
  52. 52.
    A. Itoh, S.C. Gill, and T.W. Clyne, The Effect of Cooling Conditions on the Spontaneous Debonding of Thermally Sprayed Coatings,Advances in Inorganic Films and Coatings, P. Vincenzini, Ed., Elsevier, 1995,p451-458Google Scholar
  53. 53.
    D.K. Shetty, A.R. Rosenfield, and W.H. Duckworth, Mixed-Mode Fracture in Biaxial Stress State: Application of the Diametral-Compression (Brazilian Disk) Test,Eng. Fract. Mech., Vol 26,1987, p 825- 840CrossRefGoogle Scholar
  54. 54.
    J.G. Williams, On the Calculation of Energy Release Rates for Cracked Laminates,Int. J. Fract., Vol 36,1988, p 101–119CrossRefGoogle Scholar
  55. 55.
    M. Charalambides, A.J. Kinloch, Y Wang, and J.G. Williams, On the Analysis of Mixed-Mode Failure,Int. J. Fract., Vol 54, 1992, p 269- 291Google Scholar
  56. 56.
    I.E. Reimanis, B.J. Dalgleish, and A.G. Evans, The Fracture Resistance of a Model Metal/Ceramic Interface,Acta Metall. Mater., Vol 39, 1991, p 3133–3141CrossRefGoogle Scholar
  57. 57.
    M.D. Thouless, Mixed-Mode Fracture of a Lubricated Interface,Acta Metall. Mater., Vol 40,1992, p 1281–1286CrossRefGoogle Scholar
  58. 58.
    V. Tvergaard and J.W. Hutchinson, The Influence of Plasticity on Mixed Mode Interface Toughness,J. Mech. Phys. Solids, Vol 41,1993, p1119–1135CrossRefGoogle Scholar
  59. 59.
    A.R. Akisanya and N.A. Fleck, Brittle Fracture of Adhesive Joints,Int. J. Frad., Vol58,1992,p93–114CrossRefGoogle Scholar
  60. 60.
    A.J. Phillips, W.J. Clegg, and T.W. Clyne, Fracture of Ceramic Laminates in Bending, Part II: Comparison of Model Predictions with Experimental Data,Acta Metall. Mater., Vol 41,1993, p 819–827CrossRefGoogle Scholar
  61. 61.
    P.G. Charalambides and A.G. Evans, Debonding Properties of Residu- ally Stressed Brittle Matrix Composites,J. Am. Ceram. Soc, Vol 72, 1989, p 746–753CrossRefGoogle Scholar
  62. 62.
    J.W. Hutchinson and Z. Suo, Mixed Mode Cracking in Layered Materials,Adv. Appl. Mech., Vol29,1991,p63–191CrossRefGoogle Scholar
  63. 63.
    A.G. Evans, M.D. Drory, and M.S. Wu, The Cracking and Decohesion of Thin Films,J. Mater. Res., Vol 3,1988, p 1043–1049Google Scholar
  64. 64.
    A.R. Akisanya and N.A. Fleck, The Edge Cracking and Decohesion of Thin Films,Int. J. Solids Struct., Vol 31,1994, p 3175–3199CrossRefGoogle Scholar
  65. 65.
    D. Munz and Y.Y. Yang, Stress Singularities at the Interface in Bonded Dissimilar Materials under Mechanical and Thermal Loading,J. Appl. Mech., Vol 59,1992, p 857–861Google Scholar
  66. 66.
    D. Munz, M.A. Sckuhr, and Y.Y. Yang, Thermal Stresses in Ceramic- Metal Joints with an Interlayer,J. Am. Ceram. Soc, Vol 78, 1995, p 285–290CrossRefGoogle Scholar
  67. 67.
    S. Ho, C. Hillman, F.F. Lange, and Z. Suo, Surface Cracking in Layers under Biaxial, Residual Compressive Stress,J. Am. Ceram. Soc, in pressGoogle Scholar
  68. 68.
    J.L. Beuth, Cracking of Thin Bonded Films in Residual Tension,Int. J. Solid Struct., Vol 29,1992, p 1657–1675CrossRefGoogle Scholar
  69. 69.
    A. Itoh and T.W. Clyne, Initiation and Propagation of Interfacial Cracks during Spontaneous Debonding of Thermally Sprayed Coatings,Advances in Thermal Spray Science and Technology, C.C. Berndt and S. Sampath, Ed., ASM International, 1995, p 425-431Google Scholar
  70. 70.
    D. Schlager, private communicationGoogle Scholar
  71. 71.
    S. Sampath, V. Anand, and S.F. Wayne, On the Properties of Mo- based Thermal Spray Coatings for Piston Ring Applications,Proc. 2nd Plasma-Technik Symp., S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A.R. Nicoll, Ed., Plasma-Technik, Wohlen, Switzerland, 1991, p 279–288Google Scholar
  72. 72.
    U. Buran and M. Fischer, Fundamental Considerations on the Use of Graded Coatings—Piston Ring Wear Surfaces,Proc. 2nd Plasma- Technik Symp., S. Blum-Sandmeier, H. Eschnauer, P. Huber, and A.R. Nicoll, Ed., Plasma-Technik, Wohlen, Switzerland, 1991, p 195–206Google Scholar
  73. 73.
    H. Beyer and H.J. Neuhäuser, “SEM Studies of Cracking in Thermally Sprayed Piston Rings,” Report K20, Goetze AG, Bursheid, Germany, 1994Google Scholar
  74. 74.
    Y. Buran, H.-C. Mader, M. Morsbach, and B.A. Newman, Plasma- Sprayed Coatings for Piston Rings—State of Development and Appli- cation Potential,Proc. Conf. Surface Modifications and Coatings, ASM International, 1985, p 255-265Google Scholar
  75. 75.
    W.J. Brindley and R.A. Miller, TBCs for Better Engine Efficiency,Adv. Mater. Proc, Vol 136,1989, p 29–33Google Scholar
  76. 76.
    D.S. Suhr, T.E. Mitchell, and R.J. Keller, Microstructure and Durability of Zirconia Thermal Barrier Coatings,2nd Int. Conf. Science and Technology of Zirconia, N. Claussen, M. Ruhle, and A.H. Heuer, Ed., American Ceramic Society, 1984, p 503-517Google Scholar
  77. 77.
    R.A. Miller, W.J. Brindley, J.G. Goedjen, R. Tiwari, and D. Mess, The Effect of Silica on the Cyclic Life of a Zirconia-Yttria Thermal Barrier Coating,Proc. 7th National Thermal Spray Conf, C.C. Berndt and S. Sampath, Ed., ASM International, 1994, p 49-56Google Scholar
  78. 78.
    B.A. Movchan, I.S. Malashenko, K.Y. Yakovchuk, A.I. Rybnikov, and A.A. Tchizhik, Two- and Three-Layer Coatings Produced by Deposition in Vacuum for Gas Turbine Blade Protection,Surf. Coat. Technol., Vol 67,1994, p 55–63CrossRefGoogle Scholar
  79. 79.
    R.A. Miller, Current Status of Thermal Barrier Coatings—An Over- view,Surf. Coat. Technol., Vol 30,1987,p 1–11CrossRefGoogle Scholar
  80. 80.
    H. Nakahira, Y. Harada, N. Mifune, T. Yogoro, and H. Yamane, Advanced Thermal Barrier Coatings Involving Efficient Vertical Mi- crocracks,J. Therm. Spray Technol., Vol 2,1993, p 51–57Google Scholar
  81. 81.
    Y.C. Tsui and T.W. Clyne, Adhesion of Thermal Barrier Coating Systems and Incorporation of an Oxidation Barrier Layer,Thermal Spray: Practical Solutions for Engineering Problems, C.C. Berndt, Ed., ASM International, 1996, p 275Google Scholar
  82. 82.
    J.C. Lutz and D.H. Harris, Development of Thermal Barrier Coatings for the Internal Combustion Engine,Proc. Conf. Thermal Spray Technology: New Ideas and Processes, ASM International, 1988, p 437- 444Google Scholar
  83. 83.
    G.P. Jarrabet, Compliant Interlayer for Advanced Ceramic/Metal Engine Components,Auto. Eng., 1995, p 29-32Google Scholar
  84. 84.
    Y.-D. Lee and F. Erdogan, Residual Thermal Stresses in FGM and Laminated Thermal Barrier Coatings,Int. J. Frad., Vol 69,1994,p 145–165CrossRefGoogle Scholar
  85. 85.
    A.H. Bartlett and R.D. Maschio, Failure Mechanisms of a Zirconia- 8%Yttria Thermal Barrier Coating,J. Am. Ceram. Soc, Vol 78,1995, p 1018–1024CrossRefGoogle Scholar
  86. 86.
    W.J. Brindley and J.D. Whittenberger, Stress Relaxation of Low Pressure Plasma Sprayed NiCrAl Y Alloys,Mat. Sci. Eng., Vol A163,1993, p 33–41Google Scholar
  87. 87.
    M.G. Hebsur and R.V. Miner, Stress Rupture and Creep Behavior of a Low Pressure Plasma-Sprayed NiCoCrAlY Coating Alloy in Air and Vacuum,Thin Solid Films, Vol 147,1987, p 143–152CrossRefGoogle Scholar
  88. 88.
    F. Bordeaux, R.G.S. Jacques, C. Moreau, S. Dallaire, and J. Lu, Thermal Shock Resistance of TiC Coatings Plasma Sprayed onto Macroroughened Substrates,Surf. Coat. Technol., Vol 53,1992, p 49–56CrossRefGoogle Scholar
  89. 89.
    G.C. Chang, W. Phucharoen, and R.A. Miller, Behaviour of Thermal Barrier Coatings for Advanced Gas Turbine Blades,Surf. Coat. Tech- nol. Vol 30,1987, p 13–28CrossRefGoogle Scholar
  90. 90.
    R.C. Brink, Material Property Evaluation of Thick Thermal Barrier Coating Systems,J. Eng. Gas Turbines Power (Trans. ASME), Vol 111, 1989, p 570–577CrossRefGoogle Scholar

Copyright information

© ASM International 1996

Authors and Affiliations

  • T. W. Clyne
    • 1
  • S. C. Gill
    • 2
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Sulzer Innotec AGWinter-thurSwitzerland

Personalised recommendations