Advertisement

Metallurgical and Materials Transactions A

, Volume 15, Issue 6, pp 977–982 | Cite as

Interdendritic Spacing: Part II. A Comparison of Theory and Experiment

  • R. Trivedi
Symposium on Establishment of Microstructural Spacing during Dendritic and Cooperative Growth

Abstract

The primary spacing data of Part I are compared to the existing theoretical models of Hunt and of Kurz and Fisher, and a significant disagreement is found. A theoretical model based on the Hunt model is developed, and it is found that the theory adequately explains the variation in primary spacing, λ1, with the growth rate,V. A maximum in λ1,vs V is predicted and the velocity at which the maximum occurs matches with the result obtained experimentally. It is shown that the maximum in λ1 corresponds to the dendrite-to-cell transition, and cellular structures are found to grow with much smaller spacings than dendritic structures under identical growth conditions.

Keywords

Metallurgical Transaction Interface Shape Primary Spacing Succinonitrile Primary Dendrite Spacing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. H. Burden and J. D. Hunt:J. Cryst. Growth, 1974, vol. 22, p. 109.CrossRefGoogle Scholar
  2. 2.
    R. Trivedi:J. Cryst. Growth, 1980, vol. 49, p. 219.CrossRefGoogle Scholar
  3. 3.
    J.A.E. Bell and W.C. Winegard:J. Insr. Met., 1963, vol. 92, p. 357.Google Scholar
  4. 4.
    M. Ibaraki, T. Okamoto, and K. Kishitake:J. Japan Inst. Metals, 1969, vol. 33, p. 209.CrossRefGoogle Scholar
  5. 5.
    G. F. Boiling and D. Fainstein-Pedraza:Acta Metall., 1974, vol. 22, p. 1033.CrossRefGoogle Scholar
  6. 6.
    J. D. Hunt:Solidification and Casting of Metals, The Metals Society, Book 192, London, 1979, p. 3.Google Scholar
  7. 7.
    W. Kurz and D. J. Fisher:Acta Metall., 1981, vol. 29, p. 11.CrossRefGoogle Scholar
  8. 8.
    K. Somboonsuk, J. T. Mason, and R. Trivedi:Metall. Trans. A, 1984, vol. 15A, p. 967.CrossRefGoogle Scholar
  9. 9.
    C. M. Klaren, J.D. Verhoeven, and R. Trivedi:Metall. Trans. A, 1980, vol. 11 A, p. 1853.CrossRefGoogle Scholar
  10. 10.
    J. T. Mason, J. D. Verhoeven, and R. Trivedi:J. Cryst. Growth, 1982, vol. 59, p. 516.CrossRefGoogle Scholar
  11. 11.
    T.F. Bower, H.D. Brody, and M.C. Flemings:Trans. TMS-AIME, 1966, vol. 236, p. 624.Google Scholar
  12. 12.
    M.E. Olicksman: private communication, R.P.I., Troy, NY, 1982.Google Scholar
  13. 13.
    J.T. Mason, J.D. Verhoeven, and R. Trivedi:Metall. Trans. (submitted).Google Scholar
  14. 14.
    R. A. Wasson: Ph.D. Thesis, M.I.T., Cambridge, MA, 1978.Google Scholar
  15. 15.
    W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1964, vol. 35, p. 444.CrossRefGoogle Scholar
  16. 16.
    S.-C. Huang and M.E. Glicksman:Acta Metall., 1981, vol. 29, p. 701.CrossRefGoogle Scholar
  17. 17.
    D.G. McCartney and J.D. Hunt:Acta Metall., 1981, vol. 29, p. 1851.CrossRefGoogle Scholar
  18. 18.
    W. Kurz, private communication, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland, 1982.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1984

Authors and Affiliations

  • R. Trivedi
    • 1
  1. 1.Department of Materials Science and EngineeringIowa State UniversityAmes

Personalised recommendations