Advertisement

Metallurgical Transactions A

, Volume 7, Issue 2, pp 235–241 | Cite as

Hydrogen enhanced crack growth in 18 Ni maraging steels

  • S. J. Hudak
  • R. P. Wei
Mechanical Behavior

Abstract

The kinetics of sustained-load subcritical crack growth for 18 Ni maraging steels in high purity hydrogen are examined using crack-tip stress intensity,K, as a measure of crack driving force. Crack growth rate as a function of stress intensity exhibited a clearly definedK-independent stage (Stage II). Crack growth rates in an 18 Ni (250) maraging steel are examined for temperatures from -60°C to 100°C. A critical temperature was observed above which crack growth rates became diminishingly small. At lower temperatures the activation energy for Stage II crack growth was found to be 16.7 ± 3.3 kJ/mole. Temperature and hydrogen partial pressure are shown to interact in a complex manner to determine the apparentK th and the crack growth behavior. Comparison of results on ‘250’ and ‘300’ grades of 18 Ni maraging steel indicate a significant influence of alloy composition and/or strength level on the crack growth behavior. These phenomenological observations are discussed in terms of possible underlying controlling processes.

Keywords

Crack Growth Rate High Strength Steel Hydrogen Embrittlement Maraging Steel Crack Growth Behavior 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. H. Andres, A. K. Bose, H. Lee, and A. G. Quarrell:J. Iron Steel Inst., 1942, vol. 146, p. 203.Google Scholar
  2. 2.
    J. H. Andres, H. Lee, A. K. Millik, and A. G. Quarrell:J. Iron Steel Inst., 1946, vol. 153, p. 67.Google Scholar
  3. 3.
    C. R. Tottle and H. C. Wright:The Metallurgy of Welding, Brazing and Soldering, p. 56, American Elsevier, New York, 1960.Google Scholar
  4. 4.
    Hydrogen Embrittlement in Metal Finishing, H. J. Read, ed., Reinhold, Hew York, 1961.Google Scholar
  5. 5.
    C. Z. Zappffe and N. E. Haslem:Trans. ASM, 1947, vol. 39, p. 241.Google Scholar
  6. 6.
    R. H. Raring and J. A. Renebolt:Trans. ASM, 1956, vol. 48, p. 198.Google Scholar
  7. 7.
    E. P. Klier, B. B. Muvdi, and G. Sachs:Proc. ASTM, 1958, vol. 58, p. 597.Google Scholar
  8. 8.
    R. M. Burns and W. W. Bradley:Protective Coatings for Metals, Reinhold, New York, 1967.Google Scholar
  9. 9.
    L. S. Darken and R. P. Smith:Corrosion, 1949, vol. 5, p. 1.Google Scholar
  10. 10.
    T. Broom and A. J. Nicholson:J. Inst. Metals, 1960, vol. 89, p. 183.Google Scholar
  11. 11.
    A. S. Tetelman:Proceedings of Conference-Fundamental Aspects of Stress Corrosion Cracking, p. 446, NACE, Houston, 1969.Google Scholar
  12. 12.
    H. C. Van Ness and B. F. Dodge:Chem. Eng. Progr., 1955, vol. 51, p. 266.Google Scholar
  13. 13.
    D. D. Perlmutter and B. F. Dodge:Industrial and Engineering Chemistry, 1956, vol. 48, p. 855.CrossRefGoogle Scholar
  14. 14.
    W. Hofmann and W. Rauls:Weld. J., 1965, vol. 44, p. 225s.Google Scholar
  15. 15.
    R. A. Cavett and H. C. Van Ness:Weld. J., 1963, vol. 42, p. 316s.Google Scholar
  16. 16.
    J. B. Steinman, H. C. Van Ness, and G. S. Ansell:Weld. J., 1965, vol. 44, p. 221s.Google Scholar
  17. 17.
    R. M. Vennett and G. S. Ansell:Trans. ASM, 1969, vol. 62, p. 1007.Google Scholar
  18. 18.
    G. G. Hancock and H. H. Johnson:Trans. TMS-AIME, 1966, vol. 236, p. 513.Google Scholar
  19. 19.
    D. P. Williams:Scr. Met., 1968, vol. 2, p. 385.CrossRefGoogle Scholar
  20. 20.
    R. J. Walter, R. P. Jewett, and W. T. Chandler:Mater. Sci. Eng, 1969, vol. 5, p. 98.Google Scholar
  21. 21.
    I. M. Bernstein:Mater. Sci Eng, 1960, vol. 60, p. 9.Google Scholar
  22. 22.
    J. D. Landes: Kinetics of Sub-Critical Crack Growth and Deformation in a High Strength Steel, Ph.D. Dissertation, Lehigh University, 1970.Google Scholar
  23. 23.
    J. D. Landes and R. P. Wei:Int. J. Fract., 1973, vol. 9, p. 277.CrossRefGoogle Scholar
  24. 24.
    D. P. Williams and H. G. Nelson:Met. Trans., 1970, vol. 1, p. 63.Google Scholar
  25. 25.
    H. G. Nelson and D. P. Williams: Quantitative Observations of Hydrogen-Induced, Slow Crack Growth in a Low Alloy Steel, NASA Technical Memorandum, NASA TMX-62, 253, Ames Research Center, Moffett Field Ca., March 1973.Google Scholar
  26. 26.
    H. G. Nelson, D. P. Williams, and A. S. Tetelman:Met. Trans., 1971, vol. 2, p. 953.CrossRefGoogle Scholar
  27. 27.
    V. R. Sawicki Jr.:Hydrogen Induced Cracking in a High Strength Steel, Ph.D. Dissertation, Cornell University, 1971.Google Scholar
  28. 28.
    H. H. Johnson:Hydrogen Brittleness in Hydrogen and Hydrogen-Oxygen Gas Mixtures, Cornell University Report, 1973.Google Scholar
  29. 29.
    S. J. Hudak , Jr.:The Kinetics of Hydrogen Enhanced Crack Growth in High Strength Steels, M.S. Thesis, Lehigh University, 1972.Google Scholar
  30. 30.
    G. E. Kerns and R. W. Staehle:Scr. Met., 1972, vol. 6, p. 631.CrossRefGoogle Scholar
  31. 31.
    P. McIntyre:Influence of Environment on Crack Growth in High Strength Steels, BSC Corporate Laboratories Report, 1972.Google Scholar
  32. 32.
    P. Mclntyre:The Relationships Between Stress Corrosion Cracking and Sub-critical Flaw Growth in Hydrogen and Hydrogen Sulfide Gases, BSC Corporate Laboratories Report, 1972.Google Scholar
  33. 33.
    H. H. Johnson and P. C. Paris:J. Eng. Fract. Mech., 1968, vol. 1, p. 3.CrossRefGoogle Scholar
  34. 34.
    R. P. Wei:Proceedings of Conference-Fundamental Aspects of Stress Corrosion Cracking, p. 104, NACE, 1969.Google Scholar
  35. 35.
    H. R. Smith, D. E. Piper, F. K. Downey:J. Eng. Fract. Mech., 1969, vol. 1, p. 123.CrossRefGoogle Scholar
  36. 36.
    S. Mostovoy, H. R. Smith, R. G. Lingwall, E. J. Ripling:J. Eng. Fract. Mech., 1971, vol. 3, p. 291.CrossRefGoogle Scholar
  37. 37.
    S. M. Wiederhorn:Int. J. Fract. Mech, 1968, vol. 4, p. 171.Google Scholar
  38. 38.
    W. F. Brown, Jr. and J. E. Srawley: ASTM STP 410, 1966.Google Scholar
  39. 39.
    M. Isida:Int. J. Fract. Mech., 1971, vol. 7, p. 301.Google Scholar
  40. 40.
    H. H. Johnson:Mater. Res. Stand., ASTM, 1965, vol. 5, p. 422.Google Scholar
  41. 41.
    Che-Yu Li and R. P. Wei:Mater. Res. Stand, 1966, vol. 6, p. 392.Google Scholar
  42. 42.
    J. C. M. Li, R. A. Oriani, and L. S. Darken:Z. Phys. Chem. (N.F.) 1966, vol. 49, p. 271.Google Scholar
  43. 43.
    J. D. Landes and R. P. Wei:J. Eng. Mat. & Tech., Trans. ASME, ser. H, 1973, vol. l, p. 2.Google Scholar
  44. 44.
    W. A. Van Der Sluys:J. Eng. Fract. Mech., 1969, vol. 1, p. 447.CrossRefGoogle Scholar
  45. 45.
    H. H. Johnson and A. M. Willner :Appl. Mater. Res., 1965, p. 34.Google Scholar
  46. 46.
    W. Back, J. O’, M. Bockris, J. McBreen, and L. Nanis:Proc. Roy. Soc. (London), 1966, vol. A290, p. 220.ADSGoogle Scholar
  47. 47.
    D. I. Phalen and D. A. Vaughan:Corrosion, NACE, 1963, vol. 24, no. 8, p. 243.Google Scholar
  48. 48.
    H. G. Nelson and J. E. Stein:Gas-Phase Hydrogen Permeation Through Alpha Iron, 4130 Steel, and 304 Stainless Steel from Less than 100°C to Near 600°C, NASA Technical Note, NASATND-7265, Ames Research Center, Moffett Field, Ca., April 1973.Google Scholar
  49. 49.
    H. I. Eschbach, F. Gross, and S. Schulien:Vacuum, 1963, vol. 13, p. 543.CrossRefGoogle Scholar
  50. 50.
    N. J. Petch and P. Stables:Nature, 1952, vol. 169, p. 842.CrossRefADSGoogle Scholar
  51. 51.
    N. J. Petch:Phil Mag., 1956, ser. 8, vol. I, no. 4, p. 331.CrossRefADSGoogle Scholar
  52. 52.
    R. P. Frohmberg, W. J. Barnett, and A. R. Trioiano:Trans. ASM, 1955, vol. 47, p. 892.Google Scholar
  53. 53.
    A. R. Trioiano:Trans. ASM, 1960, vol. 52, p. 54.Google Scholar
  54. 54.
    R. A. Oriani:Ber. Bunsenges. Phy. Chem., 1972, vol. 76, p. 848.Google Scholar
  55. 55.
    R. A. Oriani and P. H. Josephic:Scr. Met., 1972, vol. 6, p. 681.CrossRefGoogle Scholar
  56. 56.
    C. D. Beachem:Met. Trans., 1972, vol. 3, p. 437.CrossRefGoogle Scholar
  57. 57.
    M. R. Louthan, G. R. Caskey, J. A. Donovan, and D. E. Rawl:Mater. Sci Eng., 1972, vol. 10, p. 357.CrossRefGoogle Scholar
  58. 58.
    M. R. Lauthan , Jr.:Hydrogen in Metals, p. 53, American Society for Metals, 1974.Google Scholar
  59. 59.
    H. W. Liu : J. Basic Eng. Trans. ASME, September 1970, p. 633.Google Scholar
  60. 60.
    Y. T. Chou and R. P. Wei:Scr. Met., 1972, vol. 6, p. 965.CrossRefGoogle Scholar

Copyright information

© The Metallurgical of Society of AIME 1976

Authors and Affiliations

  • S. J. Hudak
    • 1
  • R. P. Wei
    • 2
  1. 1.Westinghouse Research LaboratoriesPittsburgh
  2. 2.Lehigh UniversityBethlehem

Personalised recommendations