Metallurgical Transactions A

, Volume 12, Issue 12, pp 2101–2111 | Cite as

Stress-Induced Shape Changes and Shape Memory in the R and Martensite Transformations in Equiatomic NiTi

  • Hung C. Ling
  • Roy Kaplow 


Equiatomic NiTi wire was cooled below TR, the critical temperature for theB R transition, and then stressed in situ in a custom-built X-ray diffraction stage to study the shape memory phenomenon. Tensile stressing the specimen causes a shifting of X-ray intensity from lR to -lR. This is rationalized in terms of domain growth under external stress, resulting in a preferred arrangement of domains in theR -phase, which dimensionally accommodates the applied force. A recoverable strain of ~1.37 pet is accommodated by theR-phase, 0.56 pct of which is recovered immediately after the stress is removed and the remaining 0.81 pct on heating to above TR. This amount of strain is rationalized in terms of the difference in d-spacings and multiplicity factors between {111}R and {-111}R. The springback is primarily associated with the reversal of domain alignment while the shape memory on heating is primarily due to the return of the phase to cubic symmetry. Straining beyond 1.37 pct induces stress-assisted marteniste formation up to 5.47 pct Δl/l, the maximum strain achieved in this series of experiments. This results in a second stage of shape recovery on heating through theA, — Af temperature range. Only 15 vol pct of stress-assisted martensite accounts for nearly all of the additional ~4 pct change in Δl/l. This emphasizes the important role of the martensitic transformation in achieving large changes in macroscopic length in the shape memory phenomenon.


Martensite Metallurgical Transaction Martensitic Transformation Shape Memory Shape Memory Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Simon, R. Kaplow, E. Salzman, and D. Freiman:Radiology, 1977, vol. 125, no. l,p. 89.Google Scholar
  2. 2.
    D. P. Dautovich and G. R. Purdy:Can. Metall. Q., 1965, vol. 4, p. 129.Google Scholar
  3. 3.
    M. B. Salamon, M. Meichle, C. M. Wayman, C. M. Hwang and S. M. Shapiro:Int. Conf. on Modulated Structures, Kona. Hawaii, AIP Conf. Proc. No. 53, p. 223, American Institute of Physics, New York, 1979.Google Scholar
  4. 4.
    K. Otsuka, T. Sawamura, and K. Shimizu:Phys. Status Solidi (a), 1971, vol. 5, p. 457.CrossRefGoogle Scholar
  5. 5.
    A. Nagasawa:J. Phys. Soc: Jpn., 1971, vol. 31, p. 136.CrossRefGoogle Scholar
  6. 6.
    M. Matsumoto and T. Honma:New Aspects of Martensitic Transformation, p. 199, Kobe, Japan Institute of Metals, 1976.Google Scholar
  7. 7.
    V. N. Khachin, V. E. Gyunter, L. A. Monasevich, and Yu. I. Paskal:Sov. Phys. Dokl., 1977, vol. 22(6), pp. 336–37.Google Scholar
  8. 8.
    L. A. Monasevich, V. E. Gunter, Yu. I. Pascal, and V. N. Khachin:Proceedings of International Conf. on Martensitic Transformation (ICOMA T), Kiev, 1977, pp. 165-68 (Russian).Google Scholar
  9. 9.
    V. N. Khachin, V. E. Gunter, V. P. Sivokha, and A. S. Savvinov:Proceedings of International Conf. on Martensitic Transformation (ICOMAT), p. 474, M.I.T., Cambridge, 1979.Google Scholar
  10. 10.
    V. N. Khachin, Yu. I. Pascal, V. E. Gunter, A. A. Monasevich, and V. P. Sivokha:Phys. Met. Metallogr., 1978, vol. 46, no. 3, pp. 49–57.Google Scholar
  11. 11.
    H. C. Ling and R. Kaplow:Metall. Trans. A, 1980, vol. 11A, p. 77.Google Scholar
  12. 12.
    G. D. Sandrock, A. J. Perkins, and R. F. Hehemann:Metall. Trans, 1971, vol. 2, p. 2769.Google Scholar
  13. 13.
    K. H. Echelmeyer:Scr. Metall., 1976, vol. 10, p. 667.CrossRefGoogle Scholar
  14. 14.
    H. Warliamont and L. Delaey:Prog. Mater. Sci., vol. 18, p. 113, Pergamon Press, 1974.Google Scholar
  15. 15.
    R. J. Wasilewski:Metall. Trans., 1971, vol. 2, p. 2973.Google Scholar
  16. 16.
    A. Nagasawa, K. Enami, Y. Ishino, Y. Abe, and S. Nenno:Scr. Metall., 1974, vol. 8, p. 1055.CrossRefGoogle Scholar
  17. 17.
    J. Perkins:Scr. Metall., 1974, vol. 8, p. 1469.CrossRefGoogle Scholar
  18. 18.
    R. J. Wasilewski:Scr. Metall., 1975, vol. 9, p. 417.CrossRefGoogle Scholar
  19. 19.
    H. A. Mohamed and J. Washburn:J. Mater. Sci, 1977, vol. 12, p. 469.CrossRefGoogle Scholar
  20. 20.
    S. P. Gupta:Mater. Sci. Eng., 1973, vol. 11, p. 283.CrossRefGoogle Scholar
  21. 21.
    G. M. Michal: Ph.D. Thesis, Stanford University, November, 1979.Google Scholar
  22. 22.
    H. C. Ling and R. Kaplow:Rev. Sci. Instrum., 1980, vol. 51, no. 10, p. 41.CrossRefGoogle Scholar
  23. 23.
    H. C. Ling and R. Kaplow:Mater. Sci. Eng., 1981, vol. 48, p. 241.CrossRefGoogle Scholar
  24. 24.
    H. C. Ling and R. Kaplow:Mater. Sci. Eng, in press.Google Scholar
  25. 25.
    H. Iwasaki and Y. Watanabe:Int. Conf. on Modulated Structures, Kona, Hawaii, AIP Conf. Proc. No. 53, p. 247, American Institute of Physics, New York, 1979.Google Scholar
  26. 26.
    F. E. Wang, W. J. Buehler, and S. J. Pickart:J. Appl. Phys, 1965, vol. 36, p. 3232.CrossRefGoogle Scholar
  27. 27.
    F. E. Wang, B. F. DeSavage, W. J. Buehler, and W. R. Hosler:J. Appl. Phys., 1968, vol. 39, p. 2166.CrossRefGoogle Scholar
  28. 28.
    F. E. Wang, S. J. Pickart, and H. A. Alperin:J. Appl. Phys, 1972, vol. 43, p. 97.CrossRefGoogle Scholar
  29. 29.
    G. D. Sandrock:Metall. Trans., 1974, vol. 5, p. 299.Google Scholar
  30. 30.
    F. J. DiSalvo, Jr. and T. M. Rice:Phys. Today, 1979, vol. 32, p. 32.CrossRefGoogle Scholar

Copyright information

© American Society for Metals and the Metallurgical Society of AIME 1981

Authors and Affiliations

  • Hung C. Ling
    • 1
  • Roy Kaplow 
    • 2
  1. 1.Western Electric Engineering Research CenterPrinceton
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridge

Personalised recommendations