Metallurgical Transactions A

, Volume 17, Issue 3, pp 537–547 | Cite as

Microstructural dependence of Fe-high Mn tensile behavior

  • Y. Tomota
  • M. Strum
  • J. W. Morris
Mechanical Behaviour

Abstract

The tensile properties of Fe-high Mn (16 to 36 wt pct Mn) binary alloys were examined in detail at temperatures from 77 to 553 K. The Mn content dependence of the deformation and fracture behavior in this alloy system has been clarified by placing special emphasis on the starting microstructure and its change during deformation. In general, the intrusion of hcp epsilon martensite (ε) into austenite (γ) significantly increases the work hardening rate in these alloys by creating strong barriers to further plastic flow. Due to the resulting high work hardening rates, large amounts of e lead to high flow stresses and low ductility. Alloys of 16 to 20 wt pct Mn are of particular interest. While these alloys are thermally stable with respect to bcc α’ martensite formation, 16 to 20 wt pct Mn alloys undergo a deformation induced ε →α’ transformation. The martensitic transformation plays two contrasting roles. The stress-induced ε α’ transformation decreases the initial work hardening rate by reducing locally high internal stress. However, the work hardening rate increases as the accumulated α’ laths become obstacles against succeeding plastic flow. These rather complicated microstructural effects result in a stress-strain curve of anomolous shape. Since both the Ms and Md temperatures for both the ε and α’-martensite transformations are strongly dependent on the Mn content, characteristic relationships between the tensile behavior and the Mn content of each alloy are observed.

Keywords

Austenite Martensite Metallurgical Transaction Flow Stress Habit Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For example, J.W. Morris, Jr., S.K. Hwang, K. A. Yushchenko, V. T. Belotzerkovetz, and O. G. Kvasnerskii:Advances in Cryogenic Eng., 1978, vol. 24, pp. 91–101.Google Scholar
  2. 2.
    T. Inui, H. Sasaki, and Y. Senda:Bull. Japan Inst. Metals, 1982, vol. 21, pp. 541–45.Google Scholar
  3. 3.
    M. J. Schanfein, M. J. Yokota, V. F. Zackay, E. R. Parker, and J. W. Morris, Jr.: ASTM STP 579, 1975, pp. 361–27.Google Scholar
  4. 4.
    A. Holden, J. D. Bolton, and E. R. Petty:J. Iron and Steel Inst., June 1962, pp. 721-28.Google Scholar
  5. 5.
    C. H. White and R. W. K. Honeycomb:J. Iron and Steel Inst., June 1962, pp. 452-66.6. D. Duchateau and M. Guttman: Metal Sci., 1983, vol. 17, pp. 229-40.Google Scholar
  6. 6.
    D. Duchateau and M. Guttman:Metal Sci., 1983, vol. 17, pp. 229–40.CrossRefGoogle Scholar
  7. 7.
    K. Ishida and T. Nishizawa:Trans. Japan Inst. Metals, 1974, vol. 15, pp. 225–31.Google Scholar
  8. 8.
    Y. Tomota and J. W. Morris, Jr.:Trans. Iron Steel Inst. Japan, 24:8, 1984, no. 8.Google Scholar
  9. 9.
    A. P. Midownik:Bull. Alloy Phase Diagrams, 1982, vol. 2, pp. 406–12.Google Scholar
  10. 10.
    H. H. Ettwig and W. Pepperhoff:Phys. Stat. Solidi, 23:2, 1974, pp. 105–11.CrossRefGoogle Scholar
  11. 11.
    E. Garstein and A. Rabinkin:Acta Metall., 1979, vol. 27, pp. 1053–64.CrossRefGoogle Scholar
  12. 12.
    S. Sawa:Bull. Japan Inst. Metals, 1979, vol. 18, pp. 573–81.Google Scholar
  13. 13.
    A. Sato, E. Chishima, Y. Yamaji, and T. Mori:Acta Metall., 1984, vol. 32, pp. 539–47.CrossRefGoogle Scholar
  14. 14.
    S. Takeuchi and T. Honma:J. Japan Inst. Metals, 1955, vol. 19, pp. 652–55. Z. Nishiyama: Martensitic Transformation, M. E. Fine, M. Meshii, and C.M. Wayman, eds., Academic Press, New York, NY, 1978, pp. 48-60.Google Scholar
  15. 15.
    H. Schuman:Arch. Eisenhutt., 1967, vol. 38, p. 647 and H. Schuman: Arch. Eisenhutt., 1969, vol. 40, pp. 1027-37.Google Scholar
  16. 16.
    S. K. Hwang and J. W. Morris, Jr.:Metall. Trans. A, 1979, vol. 10A, pp. 545–55.Google Scholar
  17. 17.
    H. J. Lee and J.W. Morris, Jr.:Metall. Trans. A, 1983, vol. 14A, pp. 913–20.Google Scholar
  18. 18.
    L. Remy and A. Pineau:Mater. Sci. Engr., 1977, vol. 28, pp. 99–107.CrossRefGoogle Scholar
  19. 19.
    I. Tamura:Metal Sci., 1982, vol. 16, pp. 245–53.Google Scholar
  20. 20.
    A. Sato, K. Soma, and T. Mori:Acta Metall., 1982, vol. 30, pp. 1901–07.CrossRefGoogle Scholar
  21. 21.
    Y. Shugo, K. Sakazume, S. Kato, and T. Honma:Tohoku Daigaku Senken-Iho, 1976, vol. 32, pp. 109–18.Google Scholar
  22. 22.
    H. Suzuki, H. Kojima, K. Suzuki, T. Hashimoto, and M. Ichihara:Acta Metall., 1977, vol. 25, pp. 1151–62.CrossRefGoogle Scholar
  23. 23.
    For example, Y. Tomota and I. Tamura:Trans. Iron and Steel Inst. Japan, 1982, vol. 22, pp. 665–77.Google Scholar
  24. 24.
    Y. Tomota, K. Tanabe, K. Kuroki, and I. Tamura:Trans. Iron and Steel Inst. Japan, 1977, vol. 17, pp. 159–65.Google Scholar

Copyright information

© The Metallurgical of Society of AIME 1986

Authors and Affiliations

  • Y. Tomota
    • 1
  • M. Strum
    • 2
  • J. W. Morris
    • 3
  1. 1.Department of Metallurgical EngineeringIbaraki UniversityHitachiJapan
  2. 2.Materials and Molecular Research Division, Lawrence Berkeley LaboratoryUniversity of CaliforniaBerkeley
  3. 3.Department of Materials Science and Mineral EngineeringUniversity of CaliforniaBerkeley

Personalised recommendations