Metallurgical Transactions A

, Volume 13, Issue 2, pp 221–234 | Cite as

Heat Flow during Rapid Solidification of Undercooled Metal Droplets

  • C. G. Levi
  • R. Mehrabian
Transport Phenomena


The solidification of undercooled spherical droplets with a discrete melting temperature is analyzed using both a Newtonian and a non-Newtonian (Enthalpy) model. Relationships are established between atomization parameters, the growth kinetics, the interface velocity and undercooling, and other important solidification variables. A new mathematical formulation and solution methodology is developed for simulating the solidification process in an undercooled droplet from a single nucleation event occurring at its surface. The computational mesh used in the enthalpy model is defined on a superimposed bispherical coordinate system. Numerical solutions for the solidification of pure aluminum droplets based on the enthalpy model are developed, and their results are compared to the trends predicted from the Newtonian model. The implications of single vs multiple nucleation events are also discussed. In general, the results indicate that when substantial undercoolings are achieved in a droplet prior to nucleation, the thermal history consists of two distinct solidification regimes. In the first, the interface velocities are high, the droplet absorbs most of the latent heat released, and the external cooling usually plays a minor role. The second regime is one of slower growth, and strongly depends on the heat extraction at the droplet surface. The extent of “rapid solidification”, as determined from the fraction of material solidified at temperatures below a certain critical undercooling, is a function of the nucleation temperature, the particle size, a kinetic parameter, and the heat translow as 10~4.


Metallurgical Transaction Heat Transfer Coefficient Rapid Solidification Biot Number Interface Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Mehrabian:Rapid Solidification Processing: Principles and Technologies, R. Mehrabian, B.H. Kear, and M. Cohen, eds., Claitor Publishing Division, Baton Rouge, LA, 1978, p. 9.Google Scholar
  2. 2.
    J.P. Hirth:Metall. Trans. A, 1978, vol. 9A, p. 401.Google Scholar
  3. 3.
    C.G. Levi and R. Mehrabian:Metall. Trans. A, 1982, vol. 13A, p. 221.Google Scholar
  4. 4.
    T.Z. Kattamis and R. Mehrabian:J. Vac. Sci. Tech., 1974, vol. 11, p. 1118.CrossRefGoogle Scholar
  5. 5.
    J. H. Perepezko, D. H. Rasmussen, I. E. Anderson, and C. R. Loper, Jr.:Solidification and Casting of Metals, Proc. of Conference held at the University of Sheffield, July 18-21, 1977, The Metals Society, London, 1979, p. 169.Google Scholar
  6. 6.
    J. H. Perepezko:Rapid Solidification Processing: Principles and Technologies II, R: Mehrabian, B. H. Kear, and M. Cohen, eds., Claitor Publishing Division, Baton Rouge, LA, 1979, p. 56.Google Scholar
  7. 7.
    J. Szekely and R. J. Fisher:Metall. Trans., 1970, vol. 1, p. 1480.CrossRefGoogle Scholar
  8. 8.
    D. J. Hodkin, P. W. Sutcliffe, P. G. Mardon, and L. E. Russel:Powder Met., 1973, vol. 16, p. 277.Google Scholar
  9. 9.
    M. R. Glickstein, R. J. Patterson, II, and N. E. Shockley:Rapid Solidification Processing: Principles and Technologies, R. Mehrabian, B. H. Kear, and M. Cohen, eds., Claitor Publishing Division, Baton Rouge, LA, 1978, p. 46.Google Scholar
  10. 10.
    C.G. Levi and R. Mehrabian:Metall. Trans. B, 1980, vol. 11B, p. 21.CrossRefGoogle Scholar
  11. 11.
    N. Shamsundar and E. M. Sparrow:Trans. ASME, Series C, 1975, vol. 97, p. 333.Google Scholar
  12. 12.
    V. S. Arpaci:Conduction Heat Transfer, Addison-Wesley, Reading, MA, 1966, p. 288.Google Scholar
  13. 13.
    J. W. Cahn, W. B.Hillig, and G. W. Sears:Acta Met., 1964, vol. 12, p. 1421.CrossRefGoogle Scholar
  14. 14.
    K. A. Jackson, D.R. Uhlmann, and J.D. Hunt:J. Crystal Growth, 1967, vol. 1, p. 1.CrossRefGoogle Scholar
  15. 15.
    M. E. Glicksman and R. J. Schaefer: J. Crystal Growth 1967, vol. 1, p. 297.CrossRefGoogle Scholar
  16. 16.
    G. J. Abbaschian and S. F. Ravitz: J. Crystal Growth 1975, vol. 28, p. 16.CrossRefGoogle Scholar
  17. 17.
    D. Turnbull:Thermodynamics in Physical Metallurgy, American Society for Metals, Metals Park, OH, 1949.Google Scholar
  18. 18.
    A.D. Pasternak:Phys. Chem. of Liquids, 1972, vol. 3, p. 41.CrossRefGoogle Scholar
  19. 19.
    Metals Reference Book, 5th edition, C. J. Smithells, ed., Butterworths, London, 1976, p. 944.Google Scholar
  20. 20.
    P. Moon and D.E. Spencer:Field Theory for Engineers, D. Van Nostrand, Princeton, NJ, 1961, pp. 376–84.Google Scholar
  21. 21.
    W.W. Mullins and R.F. Sekerka:J. Appl. Phys., 1964, vol. 23, p. 444.CrossRefGoogle Scholar
  22. 22.
    R. F. Sekerka:J. Appl. Phys., 1965, vol. 36, p. 264.CrossRefGoogle Scholar
  23. 23.
    S. R. Coriell and R. F. Sekerka:Rapid Solidification Processing, Principles and Technologies II, R. Mehrabian, B. H. Kear, and M. Cohen, eds., Claitor Publishing Division, Baton Rouge, LA, 1980, p. 35.Google Scholar

Copyright information

© American Society for Metals and the Metallurgical Society of AIME 1982

Authors and Affiliations

  • C. G. Levi
    • 1
  • R. Mehrabian
    • 2
  1. 1.Metallurgical Process Engineering DepartmentATISA-ATKINS, S.A. de C.V.Mexico CityMexico
  2. 2.Department of CommerceWashington, DC

Personalised recommendations